[16534] | 1 | #include "./EnthalpyAnalysis.h"
|
---|
| 2 | #include "../toolkits/toolkits.h"
|
---|
| 3 | #include "../classes/classes.h"
|
---|
| 4 | #include "../shared/shared.h"
|
---|
| 5 | #include "../modules/modules.h"
|
---|
[18591] | 6 | #include "../solutionsequences/solutionsequences.h"
|
---|
[16534] | 7 |
|
---|
| 8 | /*Model processing*/
|
---|
[17686] | 9 | int EnthalpyAnalysis::DofsPerNode(int** doflist,int domaintype,int approximation){/*{{{*/
|
---|
[16534] | 10 | return 1;
|
---|
| 11 | }/*}}}*/
|
---|
[16542] | 12 | void EnthalpyAnalysis::UpdateParameters(Parameters* parameters,IoModel* iomodel,int solution_enum,int analysis_enum){/*{{{*/
|
---|
[16604] | 13 |
|
---|
| 14 | int numoutputs;
|
---|
| 15 | char** requestedoutputs = NULL;
|
---|
| 16 |
|
---|
| 17 | parameters->AddObject(iomodel->CopyConstantObject(ThermalStabilizationEnum));
|
---|
[18589] | 18 | parameters->AddObject(iomodel->CopyConstantObject(ThermalMaxiterEnum));
|
---|
| 19 | parameters->AddObject(iomodel->CopyConstantObject(ThermalReltolEnum));
|
---|
[16604] | 20 | parameters->AddObject(iomodel->CopyConstantObject(ThermalIsenthalpyEnum));
|
---|
| 21 | parameters->AddObject(iomodel->CopyConstantObject(ThermalIsdynamicbasalspcEnum));
|
---|
[17952] | 22 | parameters->AddObject(iomodel->CopyConstantObject(FrictionLawEnum));
|
---|
[16604] | 23 |
|
---|
| 24 | iomodel->FetchData(&requestedoutputs,&numoutputs,ThermalRequestedOutputsEnum);
|
---|
| 25 | parameters->AddObject(new IntParam(ThermalNumRequestedOutputsEnum,numoutputs));
|
---|
| 26 | if(numoutputs)parameters->AddObject(new StringArrayParam(ThermalRequestedOutputsEnum,requestedoutputs,numoutputs));
|
---|
| 27 | iomodel->DeleteData(&requestedoutputs,numoutputs,ThermalRequestedOutputsEnum);
|
---|
[16539] | 28 | }/*}}}*/
|
---|
| 29 | void EnthalpyAnalysis::UpdateElements(Elements* elements,IoModel* iomodel,int analysis_counter,int analysis_type){/*{{{*/
|
---|
| 30 |
|
---|
[17952] | 31 | bool dakota_analysis,islevelset,isenthalpy;
|
---|
| 32 | int frictionlaw;
|
---|
[16539] | 33 |
|
---|
| 34 | /*Now, is the model 3d? otherwise, do nothing: */
|
---|
[17700] | 35 | if(iomodel->domaintype==Domain2DhorizontalEnum)return;
|
---|
[16539] | 36 |
|
---|
| 37 | /*Is enthalpy requested?*/
|
---|
| 38 | iomodel->Constant(&isenthalpy,ThermalIsenthalpyEnum);
|
---|
| 39 | if(!isenthalpy) return;
|
---|
| 40 |
|
---|
| 41 | /*Fetch data needed: */
|
---|
| 42 | iomodel->FetchData(3,TemperatureEnum,WaterfractionEnum,PressureEnum);
|
---|
| 43 |
|
---|
| 44 | /*Update elements: */
|
---|
| 45 | int counter=0;
|
---|
| 46 | for(int i=0;i<iomodel->numberofelements;i++){
|
---|
| 47 | if(iomodel->my_elements[i]){
|
---|
| 48 | Element* element=(Element*)elements->GetObjectByOffset(counter);
|
---|
| 49 | element->Update(i,iomodel,analysis_counter,analysis_type,P1Enum);
|
---|
| 50 | counter++;
|
---|
| 51 | }
|
---|
| 52 | }
|
---|
| 53 |
|
---|
| 54 | iomodel->Constant(&dakota_analysis,QmuIsdakotaEnum);
|
---|
[17434] | 55 | iomodel->Constant(&islevelset,TransientIslevelsetEnum);
|
---|
[17956] | 56 | iomodel->Constant(&frictionlaw,FrictionLawEnum);
|
---|
[16539] | 57 |
|
---|
| 58 | iomodel->FetchDataToInput(elements,ThicknessEnum);
|
---|
| 59 | iomodel->FetchDataToInput(elements,SurfaceEnum);
|
---|
[17555] | 60 | iomodel->FetchDataToInput(elements,BaseEnum);
|
---|
[16539] | 61 | iomodel->FetchDataToInput(elements,MaskIceLevelsetEnum);
|
---|
| 62 | iomodel->FetchDataToInput(elements,MaskGroundediceLevelsetEnum);
|
---|
[17886] | 63 | if(iomodel->domaintype!=Domain2DhorizontalEnum){
|
---|
| 64 | iomodel->FetchDataToInput(elements,MeshVertexonbaseEnum);
|
---|
| 65 | iomodel->FetchDataToInput(elements,MeshVertexonsurfaceEnum);
|
---|
| 66 | }
|
---|
[16539] | 67 | iomodel->FetchDataToInput(elements,MaterialsRheologyBEnum);
|
---|
| 68 | iomodel->FetchDataToInput(elements,MaterialsRheologyNEnum);
|
---|
| 69 | iomodel->FetchDataToInput(elements,PressureEnum);
|
---|
| 70 | iomodel->FetchDataToInput(elements,TemperatureEnum);
|
---|
| 71 | iomodel->FetchDataToInput(elements,WaterfractionEnum);
|
---|
| 72 | iomodel->FetchDataToInput(elements,EnthalpyEnum);
|
---|
| 73 | iomodel->FetchDataToInput(elements,BasalforcingsGeothermalfluxEnum);
|
---|
| 74 | iomodel->FetchDataToInput(elements,WatercolumnEnum);
|
---|
[18068] | 75 | iomodel->FetchDataToInput(elements,BasalforcingsGroundediceMeltingRateEnum);
|
---|
[16539] | 76 | iomodel->FetchDataToInput(elements,VxEnum);
|
---|
| 77 | iomodel->FetchDataToInput(elements,VyEnum);
|
---|
| 78 | iomodel->FetchDataToInput(elements,VzEnum);
|
---|
| 79 | InputUpdateFromConstantx(elements,0.,VxMeshEnum);
|
---|
| 80 | InputUpdateFromConstantx(elements,0.,VyMeshEnum);
|
---|
| 81 | InputUpdateFromConstantx(elements,0.,VzMeshEnum);
|
---|
[17434] | 82 | if(islevelset){
|
---|
| 83 | iomodel->FetchDataToInput(elements,IceMaskNodeActivationEnum);
|
---|
[17610] | 84 | iomodel->FetchDataToInput(elements,MeshVertexonbaseEnum); // required for updating active nodes
|
---|
[17434] | 85 | }
|
---|
[17952] | 86 |
|
---|
| 87 | /*Friction law variables*/
|
---|
| 88 | switch(frictionlaw){
|
---|
| 89 | case 1:
|
---|
| 90 | iomodel->FetchDataToInput(elements,FrictionCoefficientEnum);
|
---|
| 91 | iomodel->FetchDataToInput(elements,FrictionPEnum);
|
---|
| 92 | iomodel->FetchDataToInput(elements,FrictionQEnum);
|
---|
| 93 | break;
|
---|
| 94 | case 2:
|
---|
| 95 | iomodel->FetchDataToInput(elements,FrictionCEnum);
|
---|
| 96 | iomodel->FetchDataToInput(elements,FrictionMEnum);
|
---|
| 97 | break;
|
---|
| 98 | default:
|
---|
| 99 | _error_("not supported");
|
---|
| 100 | }
|
---|
[16539] | 101 | /*Free data: */
|
---|
| 102 | iomodel->DeleteData(3,TemperatureEnum,WaterfractionEnum,PressureEnum);
|
---|
| 103 | }/*}}}*/
|
---|
[16542] | 104 | void EnthalpyAnalysis::CreateNodes(Nodes* nodes,IoModel* iomodel){/*{{{*/
|
---|
[16539] | 105 |
|
---|
[17700] | 106 | if(iomodel->domaintype==Domain3DEnum) iomodel->FetchData(2,MeshVertexonbaseEnum,MeshVertexonsurfaceEnum);
|
---|
[16542] | 107 | ::CreateNodes(nodes,iomodel,EnthalpyAnalysisEnum,P1Enum);
|
---|
[17610] | 108 | iomodel->DeleteData(2,MeshVertexonbaseEnum,MeshVertexonsurfaceEnum);
|
---|
[16539] | 109 | }/*}}}*/
|
---|
[16542] | 110 | void EnthalpyAnalysis::CreateConstraints(Constraints* constraints,IoModel* iomodel){/*{{{*/
|
---|
[16539] | 111 |
|
---|
| 112 | /*Intermediary*/
|
---|
| 113 | int count;
|
---|
| 114 | int M,N;
|
---|
| 115 | bool spcpresent = false;
|
---|
| 116 | IssmDouble heatcapacity;
|
---|
| 117 | IssmDouble referencetemperature;
|
---|
| 118 |
|
---|
| 119 | /*Output*/
|
---|
| 120 | IssmDouble *spcvector = NULL;
|
---|
| 121 | IssmDouble* times=NULL;
|
---|
| 122 | IssmDouble* values=NULL;
|
---|
| 123 |
|
---|
| 124 | /*Fetch parameters: */
|
---|
| 125 | iomodel->Constant(&heatcapacity,MaterialsHeatcapacityEnum);
|
---|
| 126 | iomodel->Constant(&referencetemperature,ConstantsReferencetemperatureEnum);
|
---|
| 127 |
|
---|
| 128 | /*return if 2d mesh*/
|
---|
[17700] | 129 | if(iomodel->domaintype==Domain2DhorizontalEnum) return;
|
---|
[16539] | 130 |
|
---|
| 131 | /*Fetch data: */
|
---|
| 132 | iomodel->FetchData(&spcvector,&M,&N,ThermalSpctemperatureEnum);
|
---|
| 133 |
|
---|
| 134 | //FIX ME: SHOULD USE IOMODELCREATECONSTRAINTS
|
---|
| 135 | /*Transient or static?:*/
|
---|
| 136 | if(M==iomodel->numberofvertices){
|
---|
| 137 | /*static: just create Constraints objects*/
|
---|
| 138 | count=0;
|
---|
| 139 |
|
---|
| 140 | for(int i=0;i<iomodel->numberofvertices;i++){
|
---|
| 141 | /*keep only this partition's nodes:*/
|
---|
| 142 | if((iomodel->my_vertices[i])){
|
---|
| 143 |
|
---|
| 144 | if (!xIsNan<IssmDouble>(spcvector[i])){
|
---|
| 145 |
|
---|
[17600] | 146 | constraints->AddObject(new SpcStatic(iomodel->constraintcounter+count+1,iomodel->nodecounter+i+1,0,heatcapacity*(spcvector[i]-referencetemperature),EnthalpyAnalysisEnum));
|
---|
[16539] | 147 | count++;
|
---|
| 148 |
|
---|
| 149 | }
|
---|
| 150 | }
|
---|
| 151 | }
|
---|
| 152 | }
|
---|
| 153 | else if (M==(iomodel->numberofvertices+1)){
|
---|
| 154 | /*transient: create transient SpcTransient objects. Same logic, except we need to retrieve
|
---|
| 155 | * various times and values to initialize an SpcTransient object: */
|
---|
| 156 | count=0;
|
---|
| 157 |
|
---|
| 158 | /*figure out times: */
|
---|
| 159 | times=xNew<IssmDouble>(N);
|
---|
| 160 | for(int j=0;j<N;j++){
|
---|
| 161 | times[j]=spcvector[(M-1)*N+j];
|
---|
| 162 | }
|
---|
| 163 |
|
---|
| 164 | /*Create constraints from x,y,z: */
|
---|
| 165 | for(int i=0;i<iomodel->numberofvertices;i++){
|
---|
| 166 |
|
---|
| 167 | /*keep only this partition's nodes:*/
|
---|
| 168 | if((iomodel->my_vertices[i])){
|
---|
| 169 |
|
---|
| 170 | /*figure out times and values: */
|
---|
| 171 | values=xNew<IssmDouble>(N);
|
---|
| 172 | spcpresent=false;
|
---|
| 173 | for(int j=0;j<N;j++){
|
---|
| 174 | values[j]=heatcapacity*(spcvector[i*N+j]-referencetemperature);
|
---|
| 175 | if(!xIsNan<IssmDouble>(values[j]))spcpresent=true; //NaN means no spc by default
|
---|
| 176 | }
|
---|
| 177 |
|
---|
| 178 | if(spcpresent){
|
---|
[17600] | 179 | constraints->AddObject(new SpcTransient(iomodel->constraintcounter+count+1,iomodel->nodecounter+i+1,0,N,times,values,EnthalpyAnalysisEnum));
|
---|
[16539] | 180 | count++;
|
---|
| 181 | }
|
---|
| 182 | xDelete<IssmDouble>(values);
|
---|
| 183 | }
|
---|
| 184 | }
|
---|
| 185 | }
|
---|
| 186 | else{
|
---|
| 187 | _error_("Size of field " << EnumToStringx(ThermalSpctemperatureEnum) << " not supported");
|
---|
| 188 | }
|
---|
| 189 |
|
---|
| 190 | /*Free ressources:*/
|
---|
| 191 | iomodel->DeleteData(spcvector,ThermalSpctemperatureEnum);
|
---|
| 192 | xDelete<IssmDouble>(times);
|
---|
| 193 | xDelete<IssmDouble>(values);
|
---|
| 194 | }/*}}}*/
|
---|
[16542] | 195 | void EnthalpyAnalysis::CreateLoads(Loads* loads, IoModel* iomodel){/*{{{*/
|
---|
[16539] | 196 |
|
---|
| 197 | /*No loads */
|
---|
| 198 | }/*}}}*/
|
---|
[16675] | 199 |
|
---|
[16782] | 200 | /*Finite Element Analysis*/
|
---|
[17029] | 201 | void EnthalpyAnalysis::Core(FemModel* femmodel){/*{{{*/
|
---|
[18591] | 202 | if(VerboseSolution()) _printf0_(" computing enthalpy\n");
|
---|
| 203 | femmodel->SetCurrentConfiguration(EnthalpyAnalysisEnum);
|
---|
| 204 | solutionsequence_thermal_nonlinear(femmodel);
|
---|
| 205 |
|
---|
| 206 | /*transfer enthalpy to enthalpy picard for the next step: */
|
---|
| 207 | InputDuplicatex(femmodel,EnthalpyEnum,EnthalpyPicardEnum);
|
---|
| 208 |
|
---|
[18612] | 209 | IssmDouble dt;
|
---|
| 210 | femmodel->parameters->FindParam(&dt,TimesteppingTimeStepEnum);
|
---|
| 211 | if(dt==0.) ComputeBasalMeltingrate(femmodel);
|
---|
| 212 | else PostProcessing(femmodel);
|
---|
[18591] | 213 |
|
---|
[17005] | 214 | }/*}}}*/
|
---|
[17000] | 215 | ElementVector* EnthalpyAnalysis::CreateDVector(Element* element){/*{{{*/
|
---|
| 216 | /*Default, return NULL*/
|
---|
| 217 | return NULL;
|
---|
| 218 | }/*}}}*/
|
---|
[16992] | 219 | ElementMatrix* EnthalpyAnalysis::CreateJacobianMatrix(Element* element){/*{{{*/
|
---|
| 220 | _error_("Not implemented");
|
---|
| 221 | }/*}}}*/
|
---|
[16782] | 222 | ElementMatrix* EnthalpyAnalysis::CreateKMatrix(Element* element){/*{{{*/
|
---|
[16888] | 223 |
|
---|
[17434] | 224 | /* Check if ice in element */
|
---|
| 225 | if(!element->IsIceInElement()) return NULL;
|
---|
| 226 |
|
---|
[16888] | 227 | /*compute all stiffness matrices for this element*/
|
---|
| 228 | ElementMatrix* Ke1=CreateKMatrixVolume(element);
|
---|
| 229 | ElementMatrix* Ke2=CreateKMatrixShelf(element);
|
---|
| 230 | ElementMatrix* Ke =new ElementMatrix(Ke1,Ke2);
|
---|
| 231 |
|
---|
| 232 | /*clean-up and return*/
|
---|
| 233 | delete Ke1;
|
---|
| 234 | delete Ke2;
|
---|
| 235 | return Ke;
|
---|
[16782] | 236 | }/*}}}*/
|
---|
[16888] | 237 | ElementMatrix* EnthalpyAnalysis::CreateKMatrixVolume(Element* element){/*{{{*/
|
---|
| 238 |
|
---|
[17434] | 239 | /* Check if ice in element */
|
---|
| 240 | if(!element->IsIceInElement()) return NULL;
|
---|
| 241 |
|
---|
[16888] | 242 | /*Intermediaries */
|
---|
| 243 | int stabilization;
|
---|
| 244 | IssmDouble Jdet,dt,u,v,w,um,vm,wm,vel;
|
---|
| 245 | IssmDouble h,hx,hy,hz,vx,vy,vz;
|
---|
| 246 | IssmDouble tau_parameter,diameter;
|
---|
| 247 | IssmDouble D_scalar;
|
---|
| 248 | IssmDouble* xyz_list = NULL;
|
---|
| 249 |
|
---|
| 250 | /*Fetch number of nodes and dof for this finite element*/
|
---|
| 251 | int numnodes = element->GetNumberOfNodes();
|
---|
| 252 |
|
---|
| 253 | /*Initialize Element vector and other vectors*/
|
---|
| 254 | ElementMatrix* Ke = element->NewElementMatrix();
|
---|
| 255 | IssmDouble* basis = xNew<IssmDouble>(numnodes);
|
---|
| 256 | IssmDouble* dbasis = xNew<IssmDouble>(3*numnodes);
|
---|
| 257 | IssmDouble* B = xNew<IssmDouble>(3*numnodes);
|
---|
| 258 | IssmDouble* Bprime = xNew<IssmDouble>(3*numnodes);
|
---|
| 259 | IssmDouble D[3][3] = {0.};
|
---|
| 260 | IssmDouble K[3][3];
|
---|
| 261 |
|
---|
| 262 | /*Retrieve all inputs and parameters*/
|
---|
| 263 | element->GetVerticesCoordinates(&xyz_list);
|
---|
| 264 | element->FindParam(&dt,TimesteppingTimeStepEnum);
|
---|
| 265 | element->FindParam(&stabilization,ThermalStabilizationEnum);
|
---|
[17946] | 266 | IssmDouble rho_water = element->GetMaterialParameter(MaterialsRhoSeawaterEnum);
|
---|
[16888] | 267 | IssmDouble rho_ice = element->GetMaterialParameter(MaterialsRhoIceEnum);
|
---|
| 268 | IssmDouble gravity = element->GetMaterialParameter(ConstantsGEnum);
|
---|
| 269 | IssmDouble heatcapacity = element->GetMaterialParameter(MaterialsHeatcapacityEnum);
|
---|
| 270 | IssmDouble thermalconductivity = element->GetMaterialParameter(MaterialsThermalconductivityEnum);
|
---|
| 271 | Input* vx_input = element->GetInput(VxEnum); _assert_(vx_input);
|
---|
| 272 | Input* vy_input = element->GetInput(VyEnum); _assert_(vy_input);
|
---|
| 273 | Input* vz_input = element->GetInput(VzEnum); _assert_(vz_input);
|
---|
| 274 | Input* vxm_input = element->GetInput(VxMeshEnum); _assert_(vxm_input);
|
---|
| 275 | Input* vym_input = element->GetInput(VyMeshEnum); _assert_(vym_input);
|
---|
| 276 | Input* vzm_input = element->GetInput(VzMeshEnum); _assert_(vzm_input);
|
---|
| 277 | if(stabilization==2) diameter=element->MinEdgeLength(xyz_list);
|
---|
| 278 |
|
---|
| 279 | /*Enthalpy diffusion parameter*/
|
---|
[17027] | 280 | IssmDouble kappa=this->EnthalpyDiffusionParameterVolume(element,EnthalpyPicardEnum); _assert_(kappa>=0.);
|
---|
[16888] | 281 |
|
---|
| 282 | /* Start looping on the number of gaussian points: */
|
---|
| 283 | Gauss* gauss=element->NewGauss(2);
|
---|
| 284 | for(int ig=gauss->begin();ig<gauss->end();ig++){
|
---|
| 285 | gauss->GaussPoint(ig);
|
---|
| 286 |
|
---|
| 287 | element->JacobianDeterminant(&Jdet,xyz_list,gauss);
|
---|
| 288 | D_scalar=gauss->weight*Jdet;
|
---|
| 289 | if(dt!=0.) D_scalar=D_scalar*dt;
|
---|
| 290 |
|
---|
| 291 | /*Conduction: */
|
---|
| 292 | GetBConduct(B,element,xyz_list,gauss);
|
---|
| 293 | D[0][0]=D_scalar*kappa/rho_ice;
|
---|
| 294 | D[1][1]=D_scalar*kappa/rho_ice;
|
---|
| 295 | D[2][2]=D_scalar*kappa/rho_ice;
|
---|
| 296 | TripleMultiply(B,3,numnodes,1,
|
---|
| 297 | &D[0][0],3,3,0,
|
---|
| 298 | B,3,numnodes,0,
|
---|
| 299 | &Ke->values[0],1);
|
---|
| 300 |
|
---|
| 301 | /*Advection: */
|
---|
| 302 | GetBAdvec(B,element,xyz_list,gauss);
|
---|
| 303 | GetBAdvecprime(Bprime,element,xyz_list,gauss);
|
---|
| 304 | vx_input->GetInputValue(&u,gauss); vxm_input->GetInputValue(&um,gauss); vx=u-um;
|
---|
| 305 | vy_input->GetInputValue(&v,gauss); vym_input->GetInputValue(&vm,gauss); vy=v-vm;
|
---|
| 306 | vz_input->GetInputValue(&w,gauss); vzm_input->GetInputValue(&wm,gauss); vz=w-wm;
|
---|
| 307 | D[0][0]=D_scalar*vx;
|
---|
| 308 | D[1][1]=D_scalar*vy;
|
---|
| 309 | D[2][2]=D_scalar*vz;
|
---|
| 310 | TripleMultiply(B,3,numnodes,1,
|
---|
| 311 | &D[0][0],3,3,0,
|
---|
| 312 | Bprime,3,numnodes,0,
|
---|
| 313 | &Ke->values[0],1);
|
---|
| 314 |
|
---|
| 315 | /*Transient: */
|
---|
| 316 | if(dt!=0.){
|
---|
| 317 | D_scalar=gauss->weight*Jdet;
|
---|
| 318 | element->NodalFunctions(basis,gauss);
|
---|
| 319 | TripleMultiply(basis,numnodes,1,0,
|
---|
| 320 | &D_scalar,1,1,0,
|
---|
| 321 | basis,1,numnodes,0,
|
---|
| 322 | &Ke->values[0],1);
|
---|
| 323 | D_scalar=D_scalar*dt;
|
---|
| 324 | }
|
---|
| 325 |
|
---|
| 326 | /*Artifficial diffusivity*/
|
---|
| 327 | if(stabilization==1){
|
---|
| 328 | element->ElementSizes(&hx,&hy,&hz);
|
---|
| 329 | vel=sqrt(vx*vx + vy*vy + vz*vz)+1.e-14;
|
---|
| 330 | h=sqrt( pow(hx*vx/vel,2) + pow(hy*vy/vel,2) + pow(hz*vz/vel,2));
|
---|
[18484] | 331 | K[0][0]=h/(2.*vel)*fabs(vx*vx); K[0][1]=h/(2.*vel)*fabs(vx*vy); K[0][2]=h/(2.*vel)*fabs(vx*vz);
|
---|
| 332 | K[1][0]=h/(2.*vel)*fabs(vy*vx); K[1][1]=h/(2.*vel)*fabs(vy*vy); K[1][2]=h/(2.*vel)*fabs(vy*vz);
|
---|
| 333 | K[2][0]=h/(2.*vel)*fabs(vz*vx); K[2][1]=h/(2.*vel)*fabs(vz*vy); K[2][2]=h/(2.*vel)*fabs(vz*vz);
|
---|
[16888] | 334 | for(int i=0;i<3;i++) for(int j=0;j<3;j++) K[i][j] = D_scalar*K[i][j];
|
---|
| 335 |
|
---|
| 336 | GetBAdvecprime(Bprime,element,xyz_list,gauss);
|
---|
| 337 | TripleMultiply(Bprime,3,numnodes,1,
|
---|
| 338 | &K[0][0],3,3,0,
|
---|
| 339 | Bprime,3,numnodes,0,
|
---|
| 340 | &Ke->values[0],1);
|
---|
| 341 | }
|
---|
| 342 | else if(stabilization==2){
|
---|
| 343 | element->NodalFunctionsDerivatives(dbasis,xyz_list,gauss);
|
---|
| 344 | tau_parameter=element->StabilizationParameter(u-um,v-vm,w-wm,diameter,kappa/rho_ice);
|
---|
| 345 | for(int i=0;i<numnodes;i++){
|
---|
| 346 | for(int j=0;j<numnodes;j++){
|
---|
| 347 | Ke->values[i*numnodes+j]+=tau_parameter*D_scalar*
|
---|
[16895] | 348 | ((u-um)*dbasis[0*numnodes+i]+(v-vm)*dbasis[1*numnodes+i]+(w-wm)*dbasis[2*numnodes+i])*((u-um)*dbasis[0*numnodes+j]+(v-vm)*dbasis[1*numnodes+j]+(w-wm)*dbasis[2*numnodes+j]);
|
---|
[16888] | 349 | }
|
---|
| 350 | }
|
---|
| 351 | if(dt!=0.){
|
---|
[16896] | 352 | D_scalar=gauss->weight*Jdet;
|
---|
[16888] | 353 | for(int i=0;i<numnodes;i++){
|
---|
| 354 | for(int j=0;j<numnodes;j++){
|
---|
[16895] | 355 | Ke->values[i*numnodes+j]+=tau_parameter*D_scalar*basis[j]*((u-um)*dbasis[0*numnodes+i]+(v-vm)*dbasis[1*numnodes+i]+(w-wm)*dbasis[2*numnodes+i]);
|
---|
[16888] | 356 | }
|
---|
| 357 | }
|
---|
| 358 | }
|
---|
| 359 | }
|
---|
| 360 | }
|
---|
| 361 |
|
---|
| 362 | /*Clean up and return*/
|
---|
| 363 | xDelete<IssmDouble>(xyz_list);
|
---|
| 364 | xDelete<IssmDouble>(basis);
|
---|
| 365 | xDelete<IssmDouble>(dbasis);
|
---|
| 366 | xDelete<IssmDouble>(B);
|
---|
| 367 | xDelete<IssmDouble>(Bprime);
|
---|
| 368 | delete gauss;
|
---|
| 369 | return Ke;
|
---|
| 370 | }/*}}}*/
|
---|
| 371 | ElementMatrix* EnthalpyAnalysis::CreateKMatrixShelf(Element* element){/*{{{*/
|
---|
| 372 |
|
---|
[17434] | 373 | /* Check if ice in element */
|
---|
| 374 | if(!element->IsIceInElement()) return NULL;
|
---|
| 375 |
|
---|
[16888] | 376 | /*Initialize Element matrix and return if necessary*/
|
---|
[17585] | 377 | if(!element->IsOnBase() || !element->IsFloating()) return NULL;
|
---|
[16888] | 378 |
|
---|
[16986] | 379 | /*Intermediaries*/
|
---|
[16888] | 380 | IssmDouble dt,Jdet,D;
|
---|
| 381 | IssmDouble *xyz_list_base = NULL;
|
---|
| 382 |
|
---|
| 383 | /*Fetch number of nodes for this finite element*/
|
---|
| 384 | int numnodes = element->GetNumberOfNodes();
|
---|
| 385 |
|
---|
| 386 | /*Initialize vectors*/
|
---|
| 387 | ElementMatrix* Ke = element->NewElementMatrix();
|
---|
| 388 | IssmDouble* basis = xNew<IssmDouble>(numnodes);
|
---|
| 389 |
|
---|
| 390 | /*Retrieve all inputs and parameters*/
|
---|
| 391 | element->GetVerticesCoordinatesBase(&xyz_list_base);
|
---|
| 392 | element->FindParam(&dt,TimesteppingTimeStepEnum);
|
---|
| 393 | IssmDouble gravity = element->GetMaterialParameter(ConstantsGEnum);
|
---|
[17946] | 394 | IssmDouble rho_water = element->GetMaterialParameter(MaterialsRhoSeawaterEnum);
|
---|
[16888] | 395 | IssmDouble rho_ice = element->GetMaterialParameter(MaterialsRhoIceEnum);
|
---|
| 396 | IssmDouble heatcapacity = element->GetMaterialParameter(MaterialsHeatcapacityEnum);
|
---|
| 397 | IssmDouble mixed_layer_capacity= element->GetMaterialParameter(MaterialsMixedLayerCapacityEnum);
|
---|
| 398 | IssmDouble thermal_exchange_vel= element->GetMaterialParameter(MaterialsThermalExchangeVelocityEnum);
|
---|
| 399 |
|
---|
| 400 | /* Start looping on the number of gaussian points: */
|
---|
| 401 | Gauss* gauss=element->NewGaussBase(2);
|
---|
| 402 | for(int ig=gauss->begin();ig<gauss->end();ig++){
|
---|
| 403 | gauss->GaussPoint(ig);
|
---|
| 404 |
|
---|
| 405 | element->JacobianDeterminantBase(&Jdet,xyz_list_base,gauss);
|
---|
| 406 | element->NodalFunctions(basis,gauss);
|
---|
| 407 |
|
---|
| 408 | D=gauss->weight*Jdet*rho_water*mixed_layer_capacity*thermal_exchange_vel/(heatcapacity*rho_ice);
|
---|
| 409 | if(reCast<bool,IssmDouble>(dt)) D=dt*D;
|
---|
| 410 | TripleMultiply(basis,numnodes,1,0,
|
---|
| 411 | &D,1,1,0,
|
---|
| 412 | basis,1,numnodes,0,
|
---|
| 413 | &Ke->values[0],1);
|
---|
| 414 |
|
---|
| 415 | }
|
---|
| 416 |
|
---|
| 417 | /*Clean up and return*/
|
---|
| 418 | delete gauss;
|
---|
| 419 | xDelete<IssmDouble>(basis);
|
---|
| 420 | xDelete<IssmDouble>(xyz_list_base);
|
---|
| 421 | return Ke;
|
---|
| 422 | }/*}}}*/
|
---|
[16782] | 423 | ElementVector* EnthalpyAnalysis::CreatePVector(Element* element){/*{{{*/
|
---|
[16812] | 424 |
|
---|
[17434] | 425 | /* Check if ice in element */
|
---|
| 426 | if(!element->IsIceInElement()) return NULL;
|
---|
| 427 |
|
---|
[16812] | 428 | /*compute all load vectors for this element*/
|
---|
| 429 | ElementVector* pe1=CreatePVectorVolume(element);
|
---|
| 430 | ElementVector* pe2=CreatePVectorSheet(element);
|
---|
| 431 | ElementVector* pe3=CreatePVectorShelf(element);
|
---|
| 432 | ElementVector* pe =new ElementVector(pe1,pe2,pe3);
|
---|
| 433 |
|
---|
| 434 | /*clean-up and return*/
|
---|
| 435 | delete pe1;
|
---|
| 436 | delete pe2;
|
---|
| 437 | delete pe3;
|
---|
| 438 | return pe;
|
---|
[16782] | 439 | }/*}}}*/
|
---|
[16812] | 440 | ElementVector* EnthalpyAnalysis::CreatePVectorVolume(Element* element){/*{{{*/
|
---|
| 441 |
|
---|
[17434] | 442 | /* Check if ice in element */
|
---|
| 443 | if(!element->IsIceInElement()) return NULL;
|
---|
| 444 |
|
---|
[16812] | 445 | /*Intermediaries*/
|
---|
[17014] | 446 | int i, stabilization;
|
---|
[16812] | 447 | IssmDouble Jdet,phi,dt;
|
---|
[17014] | 448 | IssmDouble enthalpy, Hpmp;
|
---|
| 449 | IssmDouble enthalpypicard, d1enthalpypicard[3];
|
---|
| 450 | IssmDouble pressure, d1pressure[3], d2pressure;
|
---|
| 451 | IssmDouble waterfractionpicard;
|
---|
| 452 | IssmDouble kappa,tau_parameter,diameter,kappa_w;
|
---|
[16812] | 453 | IssmDouble u,v,w;
|
---|
[17014] | 454 | IssmDouble scalar_def, scalar_sens ,scalar_transient;
|
---|
[16812] | 455 | IssmDouble* xyz_list = NULL;
|
---|
[17014] | 456 | IssmDouble d1H_d1P, d1P2;
|
---|
[16812] | 457 |
|
---|
| 458 | /*Fetch number of nodes and dof for this finite element*/
|
---|
| 459 | int numnodes = element->GetNumberOfNodes();
|
---|
| 460 | int numvertices = element->GetNumberOfVertices();
|
---|
| 461 |
|
---|
| 462 | /*Initialize Element vector*/
|
---|
| 463 | ElementVector* pe = element->NewElementVector();
|
---|
| 464 | IssmDouble* basis = xNew<IssmDouble>(numnodes);
|
---|
| 465 | IssmDouble* dbasis = xNew<IssmDouble>(3*numnodes);
|
---|
| 466 |
|
---|
| 467 | /*Retrieve all inputs and parameters*/
|
---|
| 468 | element->GetVerticesCoordinates(&xyz_list);
|
---|
| 469 | IssmDouble rho_ice = element->GetMaterialParameter(MaterialsRhoIceEnum);
|
---|
[17014] | 470 | IssmDouble heatcapacity = element->GetMaterialParameter(MaterialsHeatcapacityEnum);
|
---|
[16812] | 471 | IssmDouble thermalconductivity = element->GetMaterialParameter(MaterialsThermalconductivityEnum);
|
---|
[17014] | 472 | IssmDouble temperateiceconductivity = element->GetMaterialParameter(MaterialsTemperateiceconductivityEnum);
|
---|
| 473 | IssmDouble beta = element->GetMaterialParameter(MaterialsBetaEnum);
|
---|
| 474 | IssmDouble latentheat = element->GetMaterialParameter(MaterialsLatentheatEnum);
|
---|
[16812] | 475 | element->FindParam(&dt,TimesteppingTimeStepEnum);
|
---|
| 476 | element->FindParam(&stabilization,ThermalStabilizationEnum);
|
---|
| 477 | Input* vx_input=element->GetInput(VxEnum); _assert_(vx_input);
|
---|
| 478 | Input* vy_input=element->GetInput(VyEnum); _assert_(vy_input);
|
---|
| 479 | Input* vz_input=element->GetInput(VzEnum); _assert_(vz_input);
|
---|
[17014] | 480 | Input* enthalpypicard_input=element->GetInput(EnthalpyPicardEnum); _assert_(enthalpypicard_input);
|
---|
| 481 | Input* pressure_input=element->GetInput(PressureEnum); _assert_(pressure_input);
|
---|
| 482 | Input* enthalpy_input=NULL;
|
---|
[16812] | 483 | if(reCast<bool,IssmDouble>(dt)){enthalpy_input = element->GetInput(EnthalpyEnum); _assert_(enthalpy_input);}
|
---|
| 484 | if(stabilization==2){
|
---|
| 485 | diameter=element->MinEdgeLength(xyz_list);
|
---|
[17027] | 486 | kappa=this->EnthalpyDiffusionParameterVolume(element,EnthalpyPicardEnum); _assert_(kappa>=0.);
|
---|
[16812] | 487 | }
|
---|
| 488 |
|
---|
| 489 | /* Start looping on the number of gaussian points: */
|
---|
[16975] | 490 | Gauss* gauss=element->NewGauss(3);
|
---|
[16812] | 491 | for(int ig=gauss->begin();ig<gauss->end();ig++){
|
---|
| 492 | gauss->GaussPoint(ig);
|
---|
| 493 |
|
---|
| 494 | element->JacobianDeterminant(&Jdet,xyz_list,gauss);
|
---|
| 495 | element->NodalFunctions(basis,gauss);
|
---|
[17014] | 496 |
|
---|
| 497 | /*viscous dissipation*/
|
---|
[16812] | 498 | element->ViscousHeating(&phi,xyz_list,gauss,vx_input,vy_input,vz_input);
|
---|
| 499 |
|
---|
| 500 | scalar_def=phi/rho_ice*Jdet*gauss->weight;
|
---|
[16895] | 501 | if(dt!=0.) scalar_def=scalar_def*dt;
|
---|
[16812] | 502 |
|
---|
[17014] | 503 | for(i=0;i<numnodes;i++) pe->values[i]+=scalar_def*basis[i];
|
---|
[16812] | 504 |
|
---|
[17014] | 505 | /*sensible heat flux in temperate ice*/
|
---|
| 506 | enthalpypicard_input->GetInputValue(&enthalpypicard,gauss);
|
---|
| 507 | pressure_input->GetInputValue(&pressure,gauss);
|
---|
| 508 | Hpmp=this->PureIceEnthalpy(element, pressure);
|
---|
| 509 |
|
---|
| 510 | if(enthalpypicard>=Hpmp){
|
---|
| 511 | enthalpypicard_input->GetInputDerivativeValue(&d1enthalpypicard[0],xyz_list,gauss);
|
---|
| 512 | pressure_input->GetInputDerivativeValue(&d1pressure[0],xyz_list,gauss);
|
---|
| 513 | d2pressure=0.; // for linear elements, 2nd derivative is zero
|
---|
| 514 |
|
---|
| 515 | d1H_d1P=0.;
|
---|
| 516 | for(i=0;i<3;i++) d1H_d1P+=d1enthalpypicard[i]*d1pressure[i];
|
---|
| 517 | d1P2=0.;
|
---|
| 518 | for(i=0;i<3;i++) d1P2+=pow(d1pressure[i],2.);
|
---|
| 519 |
|
---|
| 520 | scalar_sens=-beta*((temperateiceconductivity - thermalconductivity)/latentheat*(d1H_d1P + beta*heatcapacity*d1P2))/rho_ice;
|
---|
| 521 | if(dt!=0.) scalar_sens=scalar_sens*dt;
|
---|
| 522 | for(i=0;i<numnodes;i++) pe->values[i]+=scalar_sens*basis[i];
|
---|
| 523 | }
|
---|
| 524 |
|
---|
[16812] | 525 | /* Build transient now */
|
---|
| 526 | if(reCast<bool,IssmDouble>(dt)){
|
---|
| 527 | enthalpy_input->GetInputValue(&enthalpy, gauss);
|
---|
| 528 | scalar_transient=enthalpy*Jdet*gauss->weight;
|
---|
[17014] | 529 | for(i=0;i<numnodes;i++) pe->values[i]+=scalar_transient*basis[i];
|
---|
[16812] | 530 | }
|
---|
| 531 |
|
---|
| 532 | if(stabilization==2){
|
---|
| 533 | element->NodalFunctionsDerivatives(dbasis,xyz_list,gauss);
|
---|
| 534 |
|
---|
| 535 | vx_input->GetInputValue(&u,gauss);
|
---|
| 536 | vy_input->GetInputValue(&v,gauss);
|
---|
| 537 | vz_input->GetInputValue(&w,gauss);
|
---|
[16895] | 538 | tau_parameter=element->StabilizationParameter(u,v,w,diameter,kappa/rho_ice);
|
---|
[16812] | 539 |
|
---|
[17014] | 540 | for(i=0;i<numnodes;i++) pe->values[i]+=tau_parameter*scalar_def*(u*dbasis[0*numnodes+i]+v*dbasis[1*numnodes+i]+w*dbasis[2*numnodes+i]);
|
---|
[16895] | 541 |
|
---|
| 542 | if(dt!=0.){
|
---|
[17014] | 543 | for(i=0;i<numnodes;i++) pe->values[i]+=tau_parameter*scalar_transient*(u*dbasis[0*numnodes+i]+v*dbasis[1*numnodes+i]+w*dbasis[2*numnodes+i]);
|
---|
[16812] | 544 | }
|
---|
| 545 | }
|
---|
| 546 | }
|
---|
| 547 |
|
---|
| 548 | /*Clean up and return*/
|
---|
| 549 | xDelete<IssmDouble>(basis);
|
---|
| 550 | xDelete<IssmDouble>(dbasis);
|
---|
| 551 | xDelete<IssmDouble>(xyz_list);
|
---|
| 552 | delete gauss;
|
---|
| 553 | return pe;
|
---|
| 554 |
|
---|
| 555 | }/*}}}*/
|
---|
| 556 | ElementVector* EnthalpyAnalysis::CreatePVectorSheet(Element* element){/*{{{*/
|
---|
[16888] | 557 |
|
---|
[17434] | 558 | /* Check if ice in element */
|
---|
| 559 | if(!element->IsIceInElement()) return NULL;
|
---|
| 560 |
|
---|
[17014] | 561 | /* implementation of the basal condition decision chart of Aschwanden 2012, Fig.5 */
|
---|
[17585] | 562 | if(!element->IsOnBase() || element->IsFloating()) return NULL;
|
---|
[16888] | 563 |
|
---|
[18622] | 564 | bool isdynamicbasalspc;
|
---|
[18612] | 565 | int i, state;
|
---|
| 566 | IssmDouble dt,Jdet,scalar;
|
---|
| 567 | IssmDouble enthalpy, enthalpyup, pressure, pressureup, watercolumn, meltingrate;
|
---|
| 568 | IssmDouble vx,vy,vz;
|
---|
| 569 | IssmDouble alpha2,basalfriction,geothermalflux,heatflux;
|
---|
[16888] | 570 | IssmDouble *xyz_list_base = NULL;
|
---|
| 571 |
|
---|
| 572 | /*Fetch number of nodes for this finite element*/
|
---|
| 573 | int numnodes = element->GetNumberOfNodes();
|
---|
| 574 |
|
---|
| 575 | /*Initialize vectors*/
|
---|
| 576 | ElementVector* pe = element->NewElementVector();
|
---|
| 577 | IssmDouble* basis = xNew<IssmDouble>(numnodes);
|
---|
| 578 |
|
---|
| 579 | /*Retrieve all inputs and parameters*/
|
---|
| 580 | element->GetVerticesCoordinatesBase(&xyz_list_base);
|
---|
| 581 | element->FindParam(&dt,TimesteppingTimeStepEnum);
|
---|
[18622] | 582 | element->FindParam(&isdynamicbasalspc,ThermalIsdynamicbasalspcEnum);
|
---|
[16888] | 583 | Input* vx_input = element->GetInput(VxEnum); _assert_(vx_input);
|
---|
| 584 | Input* vy_input = element->GetInput(VyEnum); _assert_(vy_input);
|
---|
| 585 | Input* vz_input = element->GetInput(VzEnum); _assert_(vz_input);
|
---|
[18612] | 586 | Input* enthalpy_input = element->GetInput(EnthalpyPicardEnum); _assert_(enthalpy_input);
|
---|
| 587 | Input* pressure_input = element->GetInput(PressureEnum); _assert_(pressure_input);
|
---|
| 588 | Input* watercolumn_input = element->GetInput(WatercolumnEnum); _assert_(watercolumn_input);
|
---|
| 589 | Input* meltingrate_input = element->GetInput(BasalforcingsGroundediceMeltingRateEnum); _assert_(meltingrate_input);
|
---|
[16888] | 590 | Input* geothermalflux_input = element->GetInput(BasalforcingsGeothermalfluxEnum); _assert_(geothermalflux_input);
|
---|
[18612] | 591 | IssmDouble rho_ice = element->GetMaterialParameter(MaterialsRhoIceEnum);
|
---|
[16888] | 592 |
|
---|
| 593 | /*Build friction element, needed later: */
|
---|
| 594 | Friction* friction=new Friction(element,3);
|
---|
| 595 |
|
---|
| 596 | /* Start looping on the number of gaussian points: */
|
---|
[18665] | 597 | Gauss* gauss=element->NewGaussBase(2);
|
---|
| 598 | Gauss* gaussup=element->NewGaussTop(2);
|
---|
[16888] | 599 | for(int ig=gauss->begin();ig<gauss->end();ig++){
|
---|
| 600 | gauss->GaussPoint(ig);
|
---|
[18665] | 601 | gaussup->GaussPoint(ig);
|
---|
[16888] | 602 |
|
---|
| 603 | element->JacobianDeterminantBase(&Jdet,xyz_list_base,gauss);
|
---|
| 604 | element->NodalFunctions(basis,gauss);
|
---|
| 605 |
|
---|
[18622] | 606 | if(isdynamicbasalspc){
|
---|
| 607 | enthalpy_input->GetInputValue(&enthalpy,gauss);
|
---|
| 608 | enthalpy_input->GetInputValue(&enthalpyup,gaussup);
|
---|
| 609 | pressure_input->GetInputValue(&pressure,gauss);
|
---|
| 610 | pressure_input->GetInputValue(&pressureup,gaussup);
|
---|
| 611 | watercolumn_input->GetInputValue(&watercolumn,gauss);
|
---|
| 612 | meltingrate_input->GetInputValue(&meltingrate,gauss);
|
---|
| 613 | state=GetThermalBasalCondition(element, enthalpy, enthalpyup, pressure, pressureup, watercolumn, meltingrate);
|
---|
| 614 | }
|
---|
| 615 | else
|
---|
| 616 | state=0;
|
---|
[16888] | 617 |
|
---|
[18612] | 618 | switch (state) {
|
---|
| 619 | case 0:
|
---|
| 620 | // cold, dry base: apply basal surface forcing
|
---|
| 621 | geothermalflux_input->GetInputValue(&geothermalflux,gauss);
|
---|
| 622 | friction->GetAlpha2(&alpha2,gauss);
|
---|
| 623 | vx_input->GetInputValue(&vx,gauss);
|
---|
| 624 | vy_input->GetInputValue(&vy,gauss);
|
---|
| 625 | vz_input->GetInputValue(&vz,gauss);
|
---|
| 626 | basalfriction=alpha2*(vx*vx+vy*vy+vz*vz);
|
---|
| 627 | heatflux=(basalfriction+geothermalflux)/(rho_ice);
|
---|
| 628 | scalar=gauss->weight*Jdet*heatflux;
|
---|
| 629 | if(dt!=0.) scalar=dt*scalar;
|
---|
| 630 | for(i=0;i<numnodes;i++)
|
---|
| 631 | pe->values[i]+=scalar*basis[i];
|
---|
| 632 | break;
|
---|
| 633 | case 1:
|
---|
| 634 | // cold, wet base: keep at pressure melting point
|
---|
[18656] | 635 | break;
|
---|
[18612] | 636 | case 2:
|
---|
| 637 | // temperate, thin refreezing base: release spc
|
---|
[18656] | 638 | break;
|
---|
[18612] | 639 | case 3:
|
---|
| 640 | // temperate, thin melting base: set spc
|
---|
[18656] | 641 | break;
|
---|
[18612] | 642 | case 4:
|
---|
| 643 | // temperate, thick melting base: set grad H*n=0
|
---|
| 644 | for(i=0;i<numnodes;i++)
|
---|
| 645 | pe->values[i]+=0.;
|
---|
| 646 | break;
|
---|
| 647 | default:
|
---|
| 648 | _printf0_(" unknown thermal basal state found!");
|
---|
[16888] | 649 | }
|
---|
| 650 | }
|
---|
| 651 |
|
---|
| 652 | /*Clean up and return*/
|
---|
| 653 | delete gauss;
|
---|
| 654 | delete gaussup;
|
---|
| 655 | delete friction;
|
---|
| 656 | xDelete<IssmDouble>(basis);
|
---|
| 657 | xDelete<IssmDouble>(xyz_list_base);
|
---|
| 658 | return pe;
|
---|
| 659 |
|
---|
[16812] | 660 | }/*}}}*/
|
---|
| 661 | ElementVector* EnthalpyAnalysis::CreatePVectorShelf(Element* element){/*{{{*/
|
---|
| 662 |
|
---|
[17434] | 663 | /* Check if ice in element */
|
---|
| 664 | if(!element->IsIceInElement()) return NULL;
|
---|
| 665 |
|
---|
[16888] | 666 | /*Get basal element*/
|
---|
[17585] | 667 | if(!element->IsOnBase() || !element->IsFloating()) return NULL;
|
---|
[16888] | 668 |
|
---|
[18612] | 669 | IssmDouble Hpmp,dt,Jdet,scalar_ocean,pressure;
|
---|
[16812] | 670 | IssmDouble *xyz_list_base = NULL;
|
---|
| 671 |
|
---|
| 672 | /*Fetch number of nodes for this finite element*/
|
---|
| 673 | int numnodes = element->GetNumberOfNodes();
|
---|
| 674 |
|
---|
| 675 | /*Initialize vectors*/
|
---|
| 676 | ElementVector* pe = element->NewElementVector();
|
---|
| 677 | IssmDouble* basis = xNew<IssmDouble>(numnodes);
|
---|
| 678 |
|
---|
| 679 | /*Retrieve all inputs and parameters*/
|
---|
| 680 | element->GetVerticesCoordinatesBase(&xyz_list_base);
|
---|
| 681 | element->FindParam(&dt,TimesteppingTimeStepEnum);
|
---|
| 682 | Input* pressure_input=element->GetInput(PressureEnum); _assert_(pressure_input);
|
---|
| 683 | IssmDouble gravity = element->GetMaterialParameter(ConstantsGEnum);
|
---|
[17946] | 684 | IssmDouble rho_water = element->GetMaterialParameter(MaterialsRhoSeawaterEnum);
|
---|
[16812] | 685 | IssmDouble rho_ice = element->GetMaterialParameter(MaterialsRhoIceEnum);
|
---|
| 686 | IssmDouble heatcapacity = element->GetMaterialParameter(MaterialsHeatcapacityEnum);
|
---|
| 687 | IssmDouble mixed_layer_capacity= element->GetMaterialParameter(MaterialsMixedLayerCapacityEnum);
|
---|
| 688 | IssmDouble thermal_exchange_vel= element->GetMaterialParameter(MaterialsThermalExchangeVelocityEnum);
|
---|
| 689 |
|
---|
| 690 | /* Start looping on the number of gaussian points: */
|
---|
| 691 | Gauss* gauss=element->NewGaussBase(2);
|
---|
| 692 | for(int ig=gauss->begin();ig<gauss->end();ig++){
|
---|
| 693 | gauss->GaussPoint(ig);
|
---|
| 694 |
|
---|
| 695 | element->JacobianDeterminantBase(&Jdet,xyz_list_base,gauss);
|
---|
| 696 | element->NodalFunctions(basis,gauss);
|
---|
| 697 |
|
---|
| 698 | pressure_input->GetInputValue(&pressure,gauss);
|
---|
[18612] | 699 | Hpmp=element->PureIceEnthalpy(pressure);
|
---|
[16812] | 700 |
|
---|
[18612] | 701 | scalar_ocean=gauss->weight*Jdet*rho_water*mixed_layer_capacity*thermal_exchange_vel*Hpmp/(heatcapacity*rho_ice);
|
---|
[16812] | 702 | if(reCast<bool,IssmDouble>(dt)) scalar_ocean=dt*scalar_ocean;
|
---|
| 703 |
|
---|
| 704 | for(int i=0;i<numnodes;i++) pe->values[i]+=scalar_ocean*basis[i];
|
---|
| 705 | }
|
---|
| 706 |
|
---|
| 707 | /*Clean up and return*/
|
---|
| 708 | delete gauss;
|
---|
| 709 | xDelete<IssmDouble>(basis);
|
---|
| 710 | xDelete<IssmDouble>(xyz_list_base);
|
---|
| 711 | return pe;
|
---|
| 712 | }/*}}}*/
|
---|
[16888] | 713 | void EnthalpyAnalysis::GetBConduct(IssmDouble* B,Element* element,IssmDouble* xyz_list,Gauss* gauss){/*{{{*/
|
---|
| 714 | /*Compute B matrix. B=[B1 B2 B3 B4 B5 B6] where Bi is of size 5*NDOF1.
|
---|
| 715 | * For node i, Bi' can be expressed in the actual coordinate system
|
---|
| 716 | * by:
|
---|
| 717 | * Bi_conduct=[ dh/dx ]
|
---|
| 718 | * [ dh/dy ]
|
---|
| 719 | * [ dh/dz ]
|
---|
| 720 | * where h is the interpolation function for node i.
|
---|
| 721 | *
|
---|
| 722 | * We assume B has been allocated already, of size: 3x(NDOF1*numnodes)
|
---|
| 723 | */
|
---|
| 724 |
|
---|
| 725 | /*Fetch number of nodes for this finite element*/
|
---|
| 726 | int numnodes = element->GetNumberOfNodes();
|
---|
| 727 |
|
---|
| 728 | /*Get nodal functions derivatives*/
|
---|
| 729 | IssmDouble* dbasis=xNew<IssmDouble>(3*numnodes);
|
---|
| 730 | element->NodalFunctionsDerivatives(dbasis,xyz_list,gauss);
|
---|
| 731 |
|
---|
| 732 | /*Build B: */
|
---|
| 733 | for(int i=0;i<numnodes;i++){
|
---|
| 734 | B[numnodes*0+i] = dbasis[0*numnodes+i];
|
---|
| 735 | B[numnodes*1+i] = dbasis[1*numnodes+i];
|
---|
| 736 | B[numnodes*2+i] = dbasis[2*numnodes+i];
|
---|
| 737 | }
|
---|
| 738 |
|
---|
| 739 | /*Clean-up*/
|
---|
| 740 | xDelete<IssmDouble>(dbasis);
|
---|
| 741 | }/*}}}*/
|
---|
| 742 | void EnthalpyAnalysis::GetBAdvec(IssmDouble* B,Element* element,IssmDouble* xyz_list,Gauss* gauss){/*{{{*/
|
---|
| 743 | /*Compute B matrix. B=[B1 B2 B3 B4 B5 B6] where Bi is of size 5*NDOF1.
|
---|
| 744 | * For node i, Bi' can be expressed in the actual coordinate system
|
---|
| 745 | * by:
|
---|
| 746 | * Bi_advec =[ h ]
|
---|
| 747 | * [ h ]
|
---|
| 748 | * [ h ]
|
---|
| 749 | * where h is the interpolation function for node i.
|
---|
| 750 | *
|
---|
| 751 | * We assume B has been allocated already, of size: 3x(NDOF1*NUMNODESP1)
|
---|
| 752 | */
|
---|
| 753 |
|
---|
| 754 | /*Fetch number of nodes for this finite element*/
|
---|
| 755 | int numnodes = element->GetNumberOfNodes();
|
---|
| 756 |
|
---|
| 757 | /*Get nodal functions*/
|
---|
| 758 | IssmDouble* basis=xNew<IssmDouble>(numnodes);
|
---|
| 759 | element->NodalFunctions(basis,gauss);
|
---|
| 760 |
|
---|
| 761 | /*Build B: */
|
---|
| 762 | for(int i=0;i<numnodes;i++){
|
---|
| 763 | B[numnodes*0+i] = basis[i];
|
---|
| 764 | B[numnodes*1+i] = basis[i];
|
---|
| 765 | B[numnodes*2+i] = basis[i];
|
---|
| 766 | }
|
---|
| 767 |
|
---|
| 768 | /*Clean-up*/
|
---|
| 769 | xDelete<IssmDouble>(basis);
|
---|
| 770 | }/*}}}*/
|
---|
| 771 | void EnthalpyAnalysis::GetBAdvecprime(IssmDouble* B,Element* element,IssmDouble* xyz_list,Gauss* gauss){/*{{{*/
|
---|
| 772 | /*Compute B matrix. B=[B1 B2 B3 B4 B5 B6] where Bi is of size 5*NDOF1.
|
---|
| 773 | * For node i, Bi' can be expressed in the actual coordinate system
|
---|
| 774 | * by:
|
---|
| 775 | * Biprime_advec=[ dh/dx ]
|
---|
| 776 | * [ dh/dy ]
|
---|
| 777 | * [ dh/dz ]
|
---|
| 778 | * where h is the interpolation function for node i.
|
---|
| 779 | *
|
---|
| 780 | * We assume B has been allocated already, of size: 3x(NDOF1*numnodes)
|
---|
| 781 | */
|
---|
| 782 |
|
---|
| 783 | /*Fetch number of nodes for this finite element*/
|
---|
| 784 | int numnodes = element->GetNumberOfNodes();
|
---|
| 785 |
|
---|
| 786 | /*Get nodal functions derivatives*/
|
---|
| 787 | IssmDouble* dbasis=xNew<IssmDouble>(3*numnodes);
|
---|
| 788 | element->NodalFunctionsDerivatives(dbasis,xyz_list,gauss);
|
---|
| 789 |
|
---|
| 790 | /*Build B: */
|
---|
| 791 | for(int i=0;i<numnodes;i++){
|
---|
| 792 | B[numnodes*0+i] = dbasis[0*numnodes+i];
|
---|
| 793 | B[numnodes*1+i] = dbasis[1*numnodes+i];
|
---|
| 794 | B[numnodes*2+i] = dbasis[2*numnodes+i];
|
---|
| 795 | }
|
---|
| 796 |
|
---|
| 797 | /*Clean-up*/
|
---|
| 798 | xDelete<IssmDouble>(dbasis);
|
---|
| 799 | }/*}}}*/
|
---|
[16675] | 800 | void EnthalpyAnalysis::GetSolutionFromInputs(Vector<IssmDouble>* solution,Element* element){/*{{{*/
|
---|
| 801 | element->GetSolutionFromInputsOneDof(solution,EnthalpyEnum);
|
---|
| 802 | }/*}}}*/
|
---|
[18057] | 803 | void EnthalpyAnalysis::GradientJ(Vector<IssmDouble>* gradient,Element* element,int control_type,int control_index){/*{{{*/
|
---|
[18055] | 804 | _error_("Not implemented yet");
|
---|
| 805 | }/*}}}*/
|
---|
[16684] | 806 | void EnthalpyAnalysis::InputUpdateFromSolution(IssmDouble* solution,Element* element){/*{{{*/
|
---|
[16734] | 807 |
|
---|
| 808 | bool converged;
|
---|
| 809 | int i,rheology_law;
|
---|
| 810 | IssmDouble B_average,s_average,T_average=0.,P_average=0.;
|
---|
| 811 | int *doflist = NULL;
|
---|
| 812 | IssmDouble *xyz_list = NULL;
|
---|
| 813 |
|
---|
| 814 | /*Fetch number of nodes and dof for this finite element*/
|
---|
| 815 | int numnodes = element->GetNumberOfNodes();
|
---|
| 816 |
|
---|
| 817 | /*Fetch dof list and allocate solution vector*/
|
---|
| 818 | element->GetDofList(&doflist,NoneApproximationEnum,GsetEnum);
|
---|
| 819 | IssmDouble* values = xNew<IssmDouble>(numnodes);
|
---|
| 820 | IssmDouble* pressure = xNew<IssmDouble>(numnodes);
|
---|
[16745] | 821 | IssmDouble* surface = xNew<IssmDouble>(numnodes);
|
---|
| 822 | IssmDouble* B = xNew<IssmDouble>(numnodes);
|
---|
[16734] | 823 | IssmDouble* temperature = xNew<IssmDouble>(numnodes);
|
---|
| 824 | IssmDouble* waterfraction = xNew<IssmDouble>(numnodes);
|
---|
| 825 |
|
---|
| 826 | /*Use the dof list to index into the solution vector: */
|
---|
| 827 | for(i=0;i<numnodes;i++){
|
---|
| 828 | values[i]=solution[doflist[i]];
|
---|
| 829 |
|
---|
| 830 | /*Check solution*/
|
---|
| 831 | if(xIsNan<IssmDouble>(values[i])) _error_("NaN found in solution vector");
|
---|
| 832 | }
|
---|
| 833 |
|
---|
| 834 | /*Get all inputs and parameters*/
|
---|
| 835 | element->GetInputValue(&converged,ConvergedEnum);
|
---|
[16745] | 836 | element->GetInputListOnNodes(&pressure[0],PressureEnum);
|
---|
[16734] | 837 | if(converged){
|
---|
| 838 | for(i=0;i<numnodes;i++){
|
---|
| 839 | element->EnthalpyToThermal(&temperature[i],&waterfraction[i],values[i],pressure[i]);
|
---|
| 840 | if(waterfraction[i]<0.) _error_("Negative water fraction found in solution vector");
|
---|
[17045] | 841 | //if(waterfraction[i]>1.) _error_("Water fraction >1 found in solution vector");
|
---|
[16734] | 842 | }
|
---|
[17609] | 843 | element->AddInput(EnthalpyEnum,values,element->GetElementType());
|
---|
| 844 | element->AddInput(WaterfractionEnum,waterfraction,element->GetElementType());
|
---|
| 845 | element->AddInput(TemperatureEnum,temperature,element->GetElementType());
|
---|
[16734] | 846 |
|
---|
| 847 | /*Update Rheology only if converged (we must make sure that the temperature is below melting point
|
---|
| 848 | * otherwise the rheology could be negative*/
|
---|
| 849 | element->FindParam(&rheology_law,MaterialsRheologyLawEnum);
|
---|
[16745] | 850 | element->GetInputListOnNodes(&surface[0],SurfaceEnum);
|
---|
[16734] | 851 | switch(rheology_law){
|
---|
| 852 | case NoneEnum:
|
---|
| 853 | /*Do nothing: B is not temperature dependent*/
|
---|
| 854 | break;
|
---|
[17459] | 855 | case CuffeyEnum:
|
---|
| 856 | for(i=0;i<numnodes;i++) B[i]=Cuffey(temperature[i]);
|
---|
[17609] | 857 | element->AddInput(MaterialsRheologyBEnum,&B[0],element->GetElementType());
|
---|
[17459] | 858 | break;
|
---|
[16734] | 859 | case PatersonEnum:
|
---|
[16748] | 860 | for(i=0;i<numnodes;i++) B[i]=Paterson(temperature[i]);
|
---|
[17609] | 861 | element->AddInput(MaterialsRheologyBEnum,&B[0],element->GetElementType());
|
---|
[16734] | 862 | break;
|
---|
[16745] | 863 | case ArrheniusEnum:
|
---|
[16734] | 864 | element->GetVerticesCoordinates(&xyz_list);
|
---|
[16748] | 865 | for(i=0;i<numnodes;i++) B[i]=Arrhenius(temperature[i],surface[i]-xyz_list[i*3+2],element->GetMaterialParameter(MaterialsRheologyNEnum));
|
---|
[17609] | 866 | element->AddInput(MaterialsRheologyBEnum,&B[0],element->GetElementType());
|
---|
[16734] | 867 | break;
|
---|
| 868 | case LliboutryDuvalEnum:
|
---|
[16750] | 869 | for(i=0;i<numnodes;i++) B[i]=LliboutryDuval(values[i],pressure[i],element->GetMaterialParameter(MaterialsRheologyNEnum),element->GetMaterialParameter(MaterialsBetaEnum),element->GetMaterialParameter(ConstantsReferencetemperatureEnum),element->GetMaterialParameter(MaterialsHeatcapacityEnum),element->GetMaterialParameter(MaterialsLatentheatEnum));
|
---|
[17609] | 870 | element->AddInput(MaterialsRheologyBEnum,&B[0],element->GetElementType());
|
---|
[16745] | 871 | break;
|
---|
| 872 | default: _error_("Rheology law " << EnumToStringx(rheology_law) << " not supported yet");
|
---|
[16734] | 873 | }
|
---|
| 874 | }
|
---|
| 875 | else{
|
---|
[17609] | 876 | element->AddInput(EnthalpyPicardEnum,values,element->GetElementType());
|
---|
[16734] | 877 | }
|
---|
| 878 |
|
---|
| 879 | /*Free ressources:*/
|
---|
| 880 | xDelete<IssmDouble>(values);
|
---|
| 881 | xDelete<IssmDouble>(pressure);
|
---|
[16745] | 882 | xDelete<IssmDouble>(surface);
|
---|
| 883 | xDelete<IssmDouble>(B);
|
---|
[16734] | 884 | xDelete<IssmDouble>(temperature);
|
---|
| 885 | xDelete<IssmDouble>(waterfraction);
|
---|
| 886 | xDelete<IssmDouble>(xyz_list);
|
---|
| 887 | xDelete<int>(doflist);
|
---|
[16684] | 888 | }/*}}}*/
|
---|
[17212] | 889 | void EnthalpyAnalysis::UpdateConstraints(FemModel* femmodel){/*{{{*/
|
---|
[17434] | 890 |
|
---|
| 891 | bool islevelset;
|
---|
| 892 | femmodel->parameters->FindParam(&islevelset,TransientIslevelsetEnum);
|
---|
| 893 | if(islevelset){
|
---|
| 894 | SetActiveNodesLSMx(femmodel);
|
---|
| 895 | }
|
---|
[17212] | 896 | return;
|
---|
| 897 | }/*}}}*/
|
---|
[16888] | 898 |
|
---|
[17002] | 899 | /*Modules*/
|
---|
[17166] | 900 | void EnthalpyAnalysis::PostProcessing(FemModel* femmodel){/*{{{*/
|
---|
| 901 |
|
---|
[17029] | 902 | /*Intermediaries*/
|
---|
[17166] | 903 | bool computebasalmeltingrates=true;
|
---|
[18612] | 904 | bool drainicecolumn=true;
|
---|
| 905 | bool isdynamicbasalspc;
|
---|
| 906 | IssmDouble dt;
|
---|
[17002] | 907 |
|
---|
[18612] | 908 | femmodel->parameters->FindParam(&isdynamicbasalspc,ThermalIsdynamicbasalspcEnum);
|
---|
| 909 | femmodel->parameters->FindParam(&dt,TimesteppingTimeStepEnum);
|
---|
[17002] | 910 |
|
---|
[18612] | 911 | //TODO: use dt to decide what to do
|
---|
| 912 | if(drainicecolumn) DrainWaterfraction(femmodel);
|
---|
| 913 | if(computebasalmeltingrates) ComputeBasalMeltingrate(femmodel);
|
---|
| 914 | if(isdynamicbasalspc) UpdateBasalConstraints(femmodel);
|
---|
[17166] | 915 |
|
---|
[18612] | 916 | }/*}}}*/
|
---|
| 917 | void EnthalpyAnalysis::ComputeBasalMeltingrate(FemModel* femmodel){/*{{{*/
|
---|
| 918 | /*Compute basal melting rates: */
|
---|
| 919 | for(int i=0;i<femmodel->elements->Size();i++){
|
---|
| 920 | Element* element=xDynamicCast<Element*>(femmodel->elements->GetObjectByOffset(i));
|
---|
| 921 | ComputeBasalMeltingrate(element);
|
---|
[17166] | 922 | }
|
---|
[17002] | 923 | }/*}}}*/
|
---|
| 924 | void EnthalpyAnalysis::ComputeBasalMeltingrate(Element* element){/*{{{*/
|
---|
[17014] | 925 | /*Calculate the basal melt rates of the enthalpy model after Aschwanden 2012*/
|
---|
| 926 | /* melting rate is positive when melting, negative when refreezing*/
|
---|
[17002] | 927 |
|
---|
[17434] | 928 | /* Check if ice in element */
|
---|
| 929 | if(!element->IsIceInElement()) return;
|
---|
| 930 |
|
---|
| 931 | /* Only compute melt rates at the base of grounded ice*/
|
---|
[17585] | 932 | if(!element->IsOnBase() || element->IsFloating()) return;
|
---|
[17434] | 933 |
|
---|
[17014] | 934 | /* Intermediaries */
|
---|
[18667] | 935 | bool converged;
|
---|
[17046] | 936 | const int dim=3;
|
---|
[18612] | 937 | int i,is,state;
|
---|
| 938 | int vertexdown,vertexup,numvertices,numsegments;
|
---|
[18667] | 939 | int enthalpy_enum;
|
---|
[18612] | 940 | IssmDouble vec_heatflux[dim],normal_base[dim],d1enthalpy[dim],d1pressure[dim];
|
---|
| 941 | IssmDouble basalfriction,alpha2,geothermalflux,heatflux;
|
---|
[17014] | 942 | IssmDouble dt,yts;
|
---|
| 943 | IssmDouble melting_overshoot,lambda;
|
---|
| 944 | IssmDouble vx,vy,vz;
|
---|
| 945 | IssmDouble *xyz_list = NULL;
|
---|
| 946 | IssmDouble *xyz_list_base = NULL;
|
---|
| 947 | int *pairindices = NULL;
|
---|
| 948 |
|
---|
[18612] | 949 | /*Fetch parameters*/
|
---|
[17014] | 950 | element->GetVerticesCoordinates(&xyz_list);
|
---|
| 951 | element->GetVerticesCoordinatesBase(&xyz_list_base);
|
---|
[18667] | 952 | element->GetInputValue(&converged,ConvergedEnum);
|
---|
| 953 | element->FindParam(&dt,TimesteppingTimeStepEnum);
|
---|
| 954 | element->FindParam(&yts, ConstantsYtsEnum);
|
---|
| 955 |
|
---|
| 956 | if(dt==0. && !converged) enthalpy_enum=EnthalpyPicardEnum;
|
---|
| 957 | else enthalpy_enum=EnthalpyEnum;
|
---|
| 958 |
|
---|
[17014] | 959 | IssmDouble latentheat = element->GetMaterialParameter(MaterialsLatentheatEnum);
|
---|
| 960 | IssmDouble rho_ice = element->GetMaterialParameter(MaterialsRhoIceEnum);
|
---|
[17944] | 961 | IssmDouble rho_water = element->GetMaterialParameter(MaterialsRhoFreshwaterEnum);
|
---|
[18612] | 962 | IssmDouble beta = element->GetMaterialParameter(MaterialsBetaEnum);
|
---|
[18667] | 963 | IssmDouble kappa = EnthalpyDiffusionParameterVolume(element,enthalpy_enum); _assert_(kappa>=0.);
|
---|
[18612] | 964 | IssmDouble kappa_mix;
|
---|
| 965 |
|
---|
| 966 | /*retrieve inputs*/
|
---|
| 967 | Input* enthalpy_input = element->GetInput(enthalpy_enum); _assert_(enthalpy_input);
|
---|
| 968 | Input* pressure_input = element->GetInput(PressureEnum); _assert_(pressure_input);
|
---|
[17014] | 969 | Input* geothermalflux_input = element->GetInput(BasalforcingsGeothermalfluxEnum); _assert_(geothermalflux_input);
|
---|
| 970 | Input* vx_input = element->GetInput(VxEnum); _assert_(vx_input);
|
---|
| 971 | Input* vy_input = element->GetInput(VyEnum); _assert_(vy_input);
|
---|
| 972 | Input* vz_input = element->GetInput(VzEnum); _assert_(vz_input);
|
---|
[18612] | 973 |
|
---|
| 974 | /*Build friction element, needed later: */
|
---|
| 975 | Friction* friction=new Friction(element,dim);
|
---|
| 976 |
|
---|
| 977 | /******** MELTING RATES ************************************//*{{{*/
|
---|
[17014] | 978 | element->NormalBase(&normal_base[0],xyz_list_base);
|
---|
| 979 | element->VerticalSegmentIndices(&pairindices,&numsegments);
|
---|
| 980 | IssmDouble* meltingrate_enthalpy = xNew<IssmDouble>(numsegments);
|
---|
| 981 | IssmDouble* heating = xNew<IssmDouble>(numsegments);
|
---|
| 982 |
|
---|
| 983 | numvertices=element->GetNumberOfVertices();
|
---|
[18612] | 984 | IssmDouble* enthalpies = xNew<IssmDouble>(numvertices);
|
---|
| 985 | IssmDouble* pressures = xNew<IssmDouble>(numvertices);
|
---|
| 986 | IssmDouble* watercolumns = xNew<IssmDouble>(numvertices);
|
---|
| 987 | IssmDouble* basalmeltingrates = xNew<IssmDouble>(numvertices);
|
---|
| 988 | element->GetInputListOnVertices(enthalpies,enthalpy_enum);
|
---|
| 989 | element->GetInputListOnVertices(pressures,PressureEnum);
|
---|
| 990 | element->GetInputListOnVertices(watercolumns,WatercolumnEnum);
|
---|
| 991 | element->GetInputListOnVertices(basalmeltingrates,BasalforcingsGroundediceMeltingRateEnum);
|
---|
[17014] | 992 |
|
---|
| 993 | Gauss* gauss=element->NewGauss();
|
---|
[18612] | 994 | for(is=0;is<numsegments;is++){
|
---|
[17014] | 995 | vertexdown = pairindices[is*2+0];
|
---|
| 996 | vertexup = pairindices[is*2+1];
|
---|
| 997 | gauss->GaussVertex(vertexdown);
|
---|
| 998 |
|
---|
[18612] | 999 | state=GetThermalBasalCondition(element, enthalpies[vertexdown], enthalpies[vertexup], pressures[vertexdown], pressures[vertexup], watercolumns[vertexdown], basalmeltingrates[vertexdown]);
|
---|
| 1000 | switch (state) {
|
---|
| 1001 | case 0:
|
---|
| 1002 | // cold, dry base: apply basal surface forcing
|
---|
| 1003 | for(i=0;i<3;i++) vec_heatflux[i]=0.;
|
---|
| 1004 | break;
|
---|
| 1005 | case 1:
|
---|
| 1006 | // cold, wet base: keep at pressure melting point
|
---|
| 1007 | case 2:
|
---|
| 1008 | // temperate, thin refreezing base: release spc
|
---|
[17014] | 1009 |
|
---|
[18612] | 1010 | case 3:
|
---|
| 1011 | // temperate, thin melting base: set spc
|
---|
[18667] | 1012 | enthalpies[vertexdown]=element->PureIceEnthalpy(pressures[vertexdown]);
|
---|
[17014] | 1013 | enthalpy_input->GetInputDerivativeValue(&d1enthalpy[0],xyz_list,gauss);
|
---|
| 1014 | for(i=0;i<3;i++) vec_heatflux[i]=-kappa*d1enthalpy[i];
|
---|
[18612] | 1015 | break;
|
---|
| 1016 | case 4:
|
---|
| 1017 | // temperate, thick melting base: set grad H*n=0
|
---|
| 1018 | kappa_mix=GetWetIceConductivity(element, enthalpies[vertexdown], pressures[vertexdown]);
|
---|
| 1019 | pressure_input->GetInputDerivativeValue(&d1pressure[0],xyz_list,gauss);
|
---|
| 1020 | for(i=0;i<3;i++) vec_heatflux[i]=kappa_mix*beta*d1pressure[i];
|
---|
| 1021 | break;
|
---|
| 1022 | default:
|
---|
| 1023 | _printf0_(" unknown thermal basal state found!");
|
---|
| 1024 | }
|
---|
| 1025 | if(state==0) meltingrate_enthalpy[is]=0.;
|
---|
| 1026 | else{
|
---|
[17014] | 1027 | /*heat flux along normal*/
|
---|
| 1028 | heatflux=0.;
|
---|
| 1029 | for(i=0;i<3;i++) heatflux+=(vec_heatflux[i])*normal_base[i];
|
---|
| 1030 |
|
---|
| 1031 | /*basal friction*/
|
---|
[17943] | 1032 | friction->GetAlpha2(&alpha2,gauss);
|
---|
[18612] | 1033 | vx_input->GetInputValue(&vx,gauss); vy_input->GetInputValue(&vy,gauss); vz_input->GetInputValue(&vz,gauss);
|
---|
[17014] | 1034 | basalfriction=alpha2*(vx*vx + vy*vy + vz*vz);
|
---|
| 1035 | geothermalflux_input->GetInputValue(&geothermalflux,gauss);
|
---|
[17944] | 1036 | /* -Mb= Fb-(q-q_geo)/((1-w)*L*rho), and (1-w)*rho=rho_ice, cf Aschwanden 2012, eqs.1, 2, 66*/
|
---|
[17014] | 1037 | heating[is]=(heatflux+basalfriction+geothermalflux);
|
---|
[17944] | 1038 | meltingrate_enthalpy[is]=heating[is]/(latentheat*rho_ice); // m/s water equivalent
|
---|
[17014] | 1039 | }
|
---|
[18612] | 1040 | }/*}}}*/
|
---|
| 1041 |
|
---|
| 1042 | /******** UPDATE MELTINGRATES AND WATERCOLUMN **************//*{{{*/
|
---|
[17014] | 1043 | for(is=0;is<numsegments;is++){
|
---|
| 1044 | vertexdown = pairindices[is*2+0];
|
---|
| 1045 | vertexup = pairindices[is*2+1];
|
---|
[17015] | 1046 | if(dt!=0.){
|
---|
[18612] | 1047 | if(watercolumns[vertexdown]+meltingrate_enthalpy[is]*dt<0.){ // prevent too much freeze on
|
---|
| 1048 | lambda = -watercolumns[vertexdown]/(dt*meltingrate_enthalpy[is]); _assert_(lambda>=0.); _assert_(lambda<1.);
|
---|
| 1049 | watercolumns[vertexdown]=0.;
|
---|
| 1050 | basalmeltingrates[vertexdown]=lambda*meltingrate_enthalpy[is]; // restrict freeze on only to size of watercolumn
|
---|
| 1051 | enthalpies[vertexdown]+=(1.-lambda)*dt/yts*meltingrate_enthalpy[is]*latentheat*rho_ice; // use rest of energy to cool down base: dE=L*m, m=(1-lambda)*meltingrate*rho_ice
|
---|
[17014] | 1052 | }
|
---|
| 1053 | else{
|
---|
[18612] | 1054 | basalmeltingrates[vertexdown]=meltingrate_enthalpy[is];
|
---|
| 1055 | watercolumns[vertexdown]+=dt*meltingrate_enthalpy[is];
|
---|
[17014] | 1056 | }
|
---|
| 1057 | }
|
---|
| 1058 | else{
|
---|
[18612] | 1059 | basalmeltingrates[vertexdown]=meltingrate_enthalpy[is];
|
---|
| 1060 | if(watercolumns[vertexdown]+meltingrate_enthalpy[is]<0.)
|
---|
| 1061 | watercolumns[vertexdown]=0.;
|
---|
[18484] | 1062 | else
|
---|
[18612] | 1063 | watercolumns[vertexdown]+=meltingrate_enthalpy[is];
|
---|
[17027] | 1064 | }
|
---|
[18612] | 1065 | basalmeltingrates[vertexdown]*=rho_water/rho_ice; // convert meltingrate from water to ice equivalent
|
---|
| 1066 | _assert_(watercolumns[vertexdown]>=0.);
|
---|
| 1067 | }/*}}}*/
|
---|
[17014] | 1068 |
|
---|
| 1069 | /*feed updated variables back into model*/
|
---|
[18667] | 1070 | if(dt!=0.){
|
---|
| 1071 | element->AddInput(enthalpy_enum,enthalpies,P1Enum); //TODO: distinguis for steadystate and transient run
|
---|
| 1072 | element->AddInput(WatercolumnEnum,watercolumns,P1Enum);
|
---|
| 1073 | }
|
---|
[18612] | 1074 | element->AddInput(BasalforcingsGroundediceMeltingRateEnum,basalmeltingrates,P1Enum);
|
---|
[17014] | 1075 |
|
---|
| 1076 | /*Clean up and return*/
|
---|
| 1077 | delete gauss;
|
---|
| 1078 | delete friction;
|
---|
[17981] | 1079 | xDelete<int>(pairindices);
|
---|
[18612] | 1080 | xDelete<IssmDouble>(enthalpies);
|
---|
| 1081 | xDelete<IssmDouble>(pressures);
|
---|
| 1082 | xDelete<IssmDouble>(watercolumns);
|
---|
| 1083 | xDelete<IssmDouble>(basalmeltingrates);
|
---|
[17014] | 1084 | xDelete<IssmDouble>(meltingrate_enthalpy);
|
---|
| 1085 | xDelete<IssmDouble>(heating);
|
---|
[17166] | 1086 | xDelete<IssmDouble>(xyz_list);
|
---|
[17981] | 1087 | xDelete<IssmDouble>(xyz_list_base);
|
---|
[17166] | 1088 | }/*}}}*/
|
---|
[18612] | 1089 | void EnthalpyAnalysis::DrainWaterfraction(FemModel* femmodel){/*{{{*/
|
---|
| 1090 | /*Drain excess water fraction in ice column: */
|
---|
| 1091 | for(int i=0;i<femmodel->elements->Size();i++){
|
---|
| 1092 | Element* element=xDynamicCast<Element*>(femmodel->elements->GetObjectByOffset(i));
|
---|
| 1093 | DrainWaterfractionIcecolumn(element);
|
---|
| 1094 | }
|
---|
| 1095 | }/*}}}*/
|
---|
[17166] | 1096 | void EnthalpyAnalysis::DrainWaterfractionIcecolumn(Element* element){/*{{{*/
|
---|
| 1097 |
|
---|
[17434] | 1098 | /* Check if ice in element */
|
---|
| 1099 | if(!element->IsIceInElement()) return;
|
---|
| 1100 |
|
---|
[17166] | 1101 | /* Only drain waterfraction of ice column from element at base*/
|
---|
[17585] | 1102 | if(!element->IsOnBase()) return; //FIXME: allow freeze on for floating elements
|
---|
[17166] | 1103 |
|
---|
| 1104 | /* Intermediaries*/
|
---|
| 1105 | int is, numvertices, numsegments;
|
---|
| 1106 | int *pairindices = NULL;
|
---|
| 1107 |
|
---|
| 1108 | numvertices=element->GetNumberOfVertices();
|
---|
| 1109 | element->VerticalSegmentIndices(&pairindices,&numsegments);
|
---|
| 1110 |
|
---|
| 1111 | IssmDouble* watercolumn = xNew<IssmDouble>(numvertices);
|
---|
| 1112 | IssmDouble* drainrate_column = xNew<IssmDouble>(numsegments);
|
---|
| 1113 | IssmDouble* drainrate_element = xNew<IssmDouble>(numsegments);
|
---|
| 1114 |
|
---|
| 1115 | element->GetInputListOnVertices(watercolumn,WatercolumnEnum);
|
---|
| 1116 |
|
---|
| 1117 | for(is=0;is<numsegments;is++) drainrate_column[is]=0.;
|
---|
| 1118 | Element* elementi = element;
|
---|
| 1119 | for(;;){
|
---|
| 1120 | for(is=0;is<numsegments;is++) drainrate_element[is]=0.;
|
---|
| 1121 | DrainWaterfraction(elementi,drainrate_element); // TODO: make sure every vertex is only drained once
|
---|
| 1122 | for(is=0;is<numsegments;is++) drainrate_column[is]+=drainrate_element[is];
|
---|
| 1123 |
|
---|
| 1124 | if(elementi->IsOnSurface()) break;
|
---|
| 1125 | elementi=elementi->GetUpperElement();
|
---|
| 1126 | }
|
---|
| 1127 | /* add drained water to water column*/
|
---|
| 1128 | for(is=0;is<numsegments;is++) watercolumn[is]+=drainrate_column[is];
|
---|
| 1129 | /* Feed updated water column back into model */
|
---|
| 1130 | element->AddInput(WatercolumnEnum,watercolumn,P1Enum);
|
---|
| 1131 |
|
---|
[17608] | 1132 | xDelete<int>(pairindices);
|
---|
[17014] | 1133 | xDelete<IssmDouble>(drainrate_column);
|
---|
| 1134 | xDelete<IssmDouble>(drainrate_element);
|
---|
[17166] | 1135 | xDelete<IssmDouble>(watercolumn);
|
---|
[17002] | 1136 | }/*}}}*/
|
---|
[17014] | 1137 | void EnthalpyAnalysis::DrainWaterfraction(Element* element, IssmDouble* pdrainrate_element){/*{{{*/
|
---|
| 1138 |
|
---|
[17434] | 1139 | /* Check if ice in element */
|
---|
| 1140 | if(!element->IsIceInElement()) return;
|
---|
| 1141 |
|
---|
[17014] | 1142 | /*Intermediaries*/
|
---|
| 1143 | int iv,is,vertexdown,vertexup,numsegments;
|
---|
| 1144 | IssmDouble dt, height_element;
|
---|
| 1145 | IssmDouble rho_water, rho_ice;
|
---|
| 1146 | int numvertices = element->GetNumberOfVertices();
|
---|
| 1147 |
|
---|
| 1148 | IssmDouble* xyz_list = NULL;
|
---|
| 1149 | IssmDouble* enthalpies = xNew<IssmDouble>(numvertices);
|
---|
| 1150 | IssmDouble* pressures = xNew<IssmDouble>(numvertices);
|
---|
| 1151 | IssmDouble* temperatures = xNew<IssmDouble>(numvertices);
|
---|
| 1152 | IssmDouble* waterfractions = xNew<IssmDouble>(numvertices);
|
---|
| 1153 | IssmDouble* deltawaterfractions = xNew<IssmDouble>(numvertices);
|
---|
| 1154 | int *pairindices = NULL;
|
---|
| 1155 |
|
---|
| 1156 | rho_ice=element->GetMaterialParameter(MaterialsRhoIceEnum);
|
---|
[17946] | 1157 | rho_water=element->GetMaterialParameter(MaterialsRhoSeawaterEnum);
|
---|
[17014] | 1158 |
|
---|
| 1159 | element->GetVerticesCoordinates(&xyz_list);
|
---|
| 1160 | element->GetInputListOnVertices(enthalpies,EnthalpyEnum);
|
---|
| 1161 | element->GetInputListOnVertices(pressures,PressureEnum);
|
---|
| 1162 |
|
---|
| 1163 | element->FindParam(&dt,TimesteppingTimeStepEnum);
|
---|
| 1164 | for(iv=0;iv<numvertices;iv++){
|
---|
| 1165 | element->EnthalpyToThermal(&temperatures[iv],&waterfractions[iv], enthalpies[iv],pressures[iv]);
|
---|
| 1166 | deltawaterfractions[iv]=DrainageFunctionWaterfraction(waterfractions[iv], dt);
|
---|
| 1167 | }
|
---|
| 1168 |
|
---|
| 1169 | /*drain waterfraction, feed updated variables back into model*/
|
---|
| 1170 | for(iv=0;iv<numvertices;iv++){
|
---|
| 1171 | if(reCast<bool,IssmDouble>(dt))
|
---|
| 1172 | waterfractions[iv]-=deltawaterfractions[iv]*dt;
|
---|
| 1173 | else
|
---|
| 1174 | waterfractions[iv]-=deltawaterfractions[iv];
|
---|
| 1175 | element->ThermalToEnthalpy(&enthalpies[iv], temperatures[iv], waterfractions[iv], pressures[iv]);
|
---|
| 1176 | }
|
---|
| 1177 | element->AddInput(EnthalpyEnum,enthalpies,P1Enum);
|
---|
| 1178 | element->AddInput(WaterfractionEnum,waterfractions,P1Enum);
|
---|
| 1179 |
|
---|
| 1180 | /*return meltwater column equivalent to drained water*/
|
---|
| 1181 | element->VerticalSegmentIndices(&pairindices,&numsegments);
|
---|
| 1182 | for(is=0;is<numsegments;is++){
|
---|
| 1183 | vertexdown = pairindices[is*2+0];
|
---|
| 1184 | vertexup = pairindices[is*2+1];
|
---|
| 1185 | height_element=fabs(xyz_list[vertexup*3+2]-xyz_list[vertexdown*3+2]);
|
---|
[17157] | 1186 | pdrainrate_element[is]=(deltawaterfractions[vertexdown]+deltawaterfractions[vertexup])/2.*height_element; // return water equivalent of drainage
|
---|
[17166] | 1187 | _assert_(pdrainrate_element[is]>=0.);
|
---|
[17014] | 1188 | }
|
---|
| 1189 |
|
---|
| 1190 | /*Clean up and return*/
|
---|
[17608] | 1191 | xDelete<int>(pairindices);
|
---|
[17014] | 1192 | xDelete<IssmDouble>(xyz_list);
|
---|
| 1193 | xDelete<IssmDouble>(enthalpies);
|
---|
| 1194 | xDelete<IssmDouble>(pressures);
|
---|
| 1195 | xDelete<IssmDouble>(temperatures);
|
---|
| 1196 | xDelete<IssmDouble>(waterfractions);
|
---|
| 1197 | xDelete<IssmDouble>(deltawaterfractions);
|
---|
[17002] | 1198 | }/*}}}*/
|
---|
[18612] | 1199 | void EnthalpyAnalysis::UpdateBasalConstraints(FemModel* femmodel){/*{{{*/
|
---|
[18659] | 1200 |
|
---|
[18612] | 1201 | /*Update basal dirichlet BCs for enthalpy: */
|
---|
[18659] | 1202 | Vector<IssmDouble>* spc = NULL;
|
---|
| 1203 | IssmDouble* serial_spc = NULL;
|
---|
| 1204 |
|
---|
| 1205 | spc=new Vector<IssmDouble>(femmodel->nodes->NumberOfNodes(EnthalpyAnalysisEnum));
|
---|
| 1206 | /*First create a vector to figure out what elements should be constrained*/
|
---|
[18612] | 1207 | for(int i=0;i<femmodel->elements->Size();i++){
|
---|
| 1208 | Element* element=xDynamicCast<Element*>(femmodel->elements->GetObjectByOffset(i));
|
---|
[18659] | 1209 | GetBasalConstraints(spc,element);
|
---|
[18612] | 1210 | }
|
---|
[18659] | 1211 |
|
---|
| 1212 | /*Assemble and serialize*/
|
---|
| 1213 | spc->Assemble();
|
---|
| 1214 | serial_spc=spc->ToMPISerial();
|
---|
| 1215 | delete spc;
|
---|
| 1216 |
|
---|
| 1217 | /*Then update basal constraints nodes accordingly*/
|
---|
| 1218 | for(int i=0;i<femmodel->elements->Size();i++){
|
---|
| 1219 | Element* element=xDynamicCast<Element*>(femmodel->elements->GetObjectByOffset(i));
|
---|
| 1220 | ApplyBasalConstraints(serial_spc,element);
|
---|
| 1221 | }
|
---|
| 1222 |
|
---|
[18620] | 1223 | femmodel->UpdateConstraintsx();
|
---|
[18659] | 1224 |
|
---|
| 1225 | /*Delete*/
|
---|
| 1226 | xDelete<IssmDouble>(serial_spc);
|
---|
[18612] | 1227 | }/*}}}*/
|
---|
[18659] | 1228 | void EnthalpyAnalysis::ApplyBasalConstraints(IssmDouble* serial_spc,Element* element){/*{{{*/
|
---|
[17002] | 1229 |
|
---|
[17434] | 1230 | /* Check if ice in element */
|
---|
| 1231 | if(!element->IsIceInElement()) return;
|
---|
| 1232 |
|
---|
| 1233 | /* Only update Constraints at the base of grounded ice*/
|
---|
[17585] | 1234 | if(!(element->IsOnBase()) || element->IsFloating()) return;
|
---|
[17434] | 1235 |
|
---|
[17027] | 1236 | /*Intermediary*/
|
---|
[18612] | 1237 | bool isdynamicbasalspc;
|
---|
[18659] | 1238 | int numindices;
|
---|
| 1239 | int *indices = NULL;
|
---|
| 1240 | Node* node = NULL;
|
---|
| 1241 | IssmDouble pressure;
|
---|
| 1242 |
|
---|
| 1243 | /*Check wether dynamic basal boundary conditions are activated */
|
---|
| 1244 | element->FindParam(&isdynamicbasalspc,ThermalIsdynamicbasalspcEnum);
|
---|
| 1245 | if(!isdynamicbasalspc) return;
|
---|
| 1246 |
|
---|
| 1247 | /*Get parameters and inputs: */
|
---|
| 1248 | Input* pressure_input = element->GetInput(PressureEnum); _assert_(pressure_input);
|
---|
| 1249 |
|
---|
| 1250 | /*Fetch indices of basal & surface nodes for this finite element*/
|
---|
| 1251 | Penta *penta = (Penta *) element; // TODO: add Basal-/SurfaceNodeIndices to element.h, and change this to Element*
|
---|
| 1252 | penta->BasalNodeIndices(&numindices,&indices,element->GetElementType());
|
---|
| 1253 |
|
---|
| 1254 | GaussPenta* gauss=new GaussPenta();
|
---|
| 1255 | for(int i=0;i<numindices;i++){
|
---|
| 1256 | gauss->GaussNode(element->GetElementType(),indices[i]);
|
---|
| 1257 |
|
---|
| 1258 | pressure_input->GetInputValue(&pressure,gauss);
|
---|
| 1259 |
|
---|
| 1260 | /*apply or release spc*/
|
---|
| 1261 | node=element->GetNode(indices[i]);
|
---|
| 1262 | if(serial_spc[node->Sid()]==1.){
|
---|
| 1263 | pressure_input->GetInputValue(&pressure, gauss);
|
---|
| 1264 | node->ApplyConstraint(0,PureIceEnthalpy(element,pressure));
|
---|
| 1265 | }
|
---|
| 1266 | else
|
---|
| 1267 | node->DofInFSet(0);
|
---|
| 1268 | }
|
---|
| 1269 |
|
---|
| 1270 | /*Free ressources:*/
|
---|
| 1271 | xDelete<int>(indices);
|
---|
| 1272 | delete gauss;
|
---|
| 1273 | }/*}}}*/
|
---|
| 1274 | void EnthalpyAnalysis::GetBasalConstraints(Vector<IssmDouble>* vec_spc,Element* element){/*{{{*/
|
---|
| 1275 |
|
---|
| 1276 | /* Check if ice in element */
|
---|
| 1277 | if(!element->IsIceInElement()) return;
|
---|
| 1278 |
|
---|
| 1279 | /* Only update Constraints at the base of grounded ice*/
|
---|
| 1280 | if(!(element->IsOnBase()) || element->IsFloating()) return;
|
---|
| 1281 |
|
---|
| 1282 | /*Intermediary*/
|
---|
| 1283 | bool isdynamicbasalspc;
|
---|
[18612] | 1284 | IssmDouble dt;
|
---|
| 1285 |
|
---|
| 1286 | /*Check wether dynamic basal boundary conditions are activated */
|
---|
| 1287 | element->FindParam(&isdynamicbasalspc,ThermalIsdynamicbasalspcEnum);
|
---|
| 1288 | if(!isdynamicbasalspc) return;
|
---|
| 1289 |
|
---|
| 1290 | element->FindParam(&dt,TimesteppingTimeStepEnum);
|
---|
| 1291 | if(dt==0.){
|
---|
[18659] | 1292 | GetBasalConstraintsSteadystate(vec_spc,element);
|
---|
[18612] | 1293 | }
|
---|
| 1294 | else{
|
---|
[18659] | 1295 | GetBasalConstraintsTransient(vec_spc,element);
|
---|
[18612] | 1296 | }
|
---|
| 1297 | }/*}}}*/
|
---|
[18659] | 1298 | void EnthalpyAnalysis::GetBasalConstraintsTransient(Vector<IssmDouble>* vec_spc,Element* element){/*{{{*/
|
---|
[18612] | 1299 |
|
---|
| 1300 | /* Check if ice in element */
|
---|
| 1301 | if(!element->IsIceInElement()) return;
|
---|
| 1302 |
|
---|
| 1303 | /* Only update Constraints at the base of grounded ice*/
|
---|
| 1304 | if(!(element->IsOnBase()) || element->IsFloating()) return;
|
---|
| 1305 |
|
---|
| 1306 | /*Intermediary*/
|
---|
| 1307 | int numindices, numindicesup, state;
|
---|
[17027] | 1308 | int *indices = NULL, *indicesup = NULL;
|
---|
[18612] | 1309 | IssmDouble enthalpy, enthalpyup, pressure, pressureup, watercolumn, meltingrate;
|
---|
[17014] | 1310 |
|
---|
[18612] | 1311 | /*Get parameters and inputs: */
|
---|
| 1312 | Input* enthalpy_input = element->GetInput(EnthalpyEnum); _assert_(enthalpy_input); //TODO: check EnthalpyPicard?
|
---|
| 1313 | Input* pressure_input = element->GetInput(PressureEnum); _assert_(pressure_input);
|
---|
| 1314 | Input* watercolumn_input = element->GetInput(WatercolumnEnum); _assert_(watercolumn_input);
|
---|
| 1315 | Input* meltingrate_input = element->GetInput(BasalforcingsGroundediceMeltingRateEnum); _assert_(meltingrate_input);
|
---|
| 1316 |
|
---|
[17027] | 1317 | /*Fetch indices of basal & surface nodes for this finite element*/
|
---|
| 1318 | Penta *penta = (Penta *) element; // TODO: add Basal-/SurfaceNodeIndices to element.h, and change this to Element*
|
---|
| 1319 | penta->BasalNodeIndices(&numindices,&indices,element->GetElementType());
|
---|
[18612] | 1320 | penta->SurfaceNodeIndices(&numindicesup,&indicesup,element->GetElementType()); _assert_(numindices==numindicesup);
|
---|
[17014] | 1321 |
|
---|
[18612] | 1322 | GaussPenta* gauss=new GaussPenta();
|
---|
| 1323 | GaussPenta* gaussup=new GaussPenta();
|
---|
| 1324 |
|
---|
| 1325 | for(int i=0;i<numindices;i++){
|
---|
| 1326 | gauss->GaussNode(element->GetElementType(),indices[i]);
|
---|
| 1327 | gaussup->GaussNode(element->GetElementType(),indicesup[i]);
|
---|
| 1328 |
|
---|
| 1329 | enthalpy_input->GetInputValue(&enthalpy,gauss);
|
---|
| 1330 | enthalpy_input->GetInputValue(&enthalpyup,gaussup);
|
---|
| 1331 | pressure_input->GetInputValue(&pressure,gauss);
|
---|
| 1332 | pressure_input->GetInputValue(&pressureup,gaussup);
|
---|
| 1333 | watercolumn_input->GetInputValue(&watercolumn,gauss);
|
---|
| 1334 | meltingrate_input->GetInputValue(&meltingrate,gauss);
|
---|
| 1335 |
|
---|
| 1336 | state=GetThermalBasalCondition(element, enthalpy, enthalpyup, pressure, pressureup, watercolumn, meltingrate);
|
---|
| 1337 |
|
---|
| 1338 | switch (state) {
|
---|
| 1339 | case 0:
|
---|
| 1340 | // cold, dry base: apply basal surface forcing
|
---|
[18659] | 1341 | vec_spc->SetValue(element->nodes[i]->Sid(),0.,INS_VAL);
|
---|
[18612] | 1342 | break;
|
---|
| 1343 | case 1:
|
---|
| 1344 | // cold, wet base: keep at pressure melting point
|
---|
[18659] | 1345 | vec_spc->SetValue(element->nodes[i]->Sid(),1.,INS_VAL);
|
---|
[18612] | 1346 | break;
|
---|
| 1347 | case 2:
|
---|
| 1348 | // temperate, thin refreezing base: release spc
|
---|
[18659] | 1349 | vec_spc->SetValue(element->nodes[i]->Sid(),0.,INS_VAL);
|
---|
[18612] | 1350 | break;
|
---|
| 1351 | case 3:
|
---|
| 1352 | // temperate, thin melting base: set spc
|
---|
[18659] | 1353 | vec_spc->SetValue(element->nodes[i]->Sid(),1.,INS_VAL);
|
---|
[18612] | 1354 | break;
|
---|
| 1355 | case 4:
|
---|
| 1356 | // temperate, thick melting base: set grad H*n=0
|
---|
[18659] | 1357 | vec_spc->SetValue(element->nodes[i]->Sid(),0.,INS_VAL);
|
---|
[18612] | 1358 | break;
|
---|
| 1359 | default:
|
---|
| 1360 | _printf0_(" unknown thermal basal state found!");
|
---|
| 1361 | }
|
---|
| 1362 |
|
---|
| 1363 | }
|
---|
| 1364 |
|
---|
| 1365 | /*Free ressources:*/
|
---|
| 1366 | xDelete<int>(indices);
|
---|
| 1367 | xDelete<int>(indicesup);
|
---|
| 1368 | delete gauss;
|
---|
| 1369 | delete gaussup;
|
---|
| 1370 | }/*}}}*/
|
---|
[18659] | 1371 | void EnthalpyAnalysis::GetBasalConstraintsSteadystate(Vector<IssmDouble>* vec_spc,Element* element){/*{{{*/
|
---|
[18612] | 1372 |
|
---|
| 1373 | /* Check if ice in element */
|
---|
| 1374 | if(!element->IsIceInElement()) return;
|
---|
| 1375 |
|
---|
| 1376 | /* Only update Constraints at the base of grounded ice*/
|
---|
| 1377 | if(!(element->IsOnBase()) || element->IsFloating()) return;
|
---|
| 1378 |
|
---|
| 1379 | /*Intermediary*/
|
---|
| 1380 | int numindices, numindicesup, state;
|
---|
| 1381 | int *indices = NULL, *indicesup = NULL;
|
---|
| 1382 | IssmDouble enthalpy, enthalpyup, pressure, pressureup, watercolumn, meltingrate;
|
---|
| 1383 |
|
---|
[17027] | 1384 | /*Get parameters and inputs: */
|
---|
[18612] | 1385 | Input* enthalpy_input = element->GetInput(EnthalpyPicardEnum); _assert_(enthalpy_input);
|
---|
| 1386 | Input* pressure_input = element->GetInput(PressureEnum); _assert_(pressure_input);
|
---|
| 1387 | Input* watercolumn_input = element->GetInput(WatercolumnEnum); _assert_(watercolumn_input);
|
---|
| 1388 | Input* meltingrate_input = element->GetInput(BasalforcingsGroundediceMeltingRateEnum); _assert_(meltingrate_input);
|
---|
[17014] | 1389 |
|
---|
[18612] | 1390 | /*Fetch indices of basal & surface nodes for this finite element*/
|
---|
| 1391 | Penta *penta = (Penta *) element; // TODO: add Basal-/SurfaceNodeIndices to element.h, and change this to Element*
|
---|
| 1392 | penta->BasalNodeIndices(&numindices,&indices,element->GetElementType());
|
---|
| 1393 | penta->SurfaceNodeIndices(&numindicesup,&indicesup,element->GetElementType()); _assert_(numindices==numindicesup);
|
---|
| 1394 |
|
---|
[17027] | 1395 | GaussPenta* gauss=new GaussPenta();
|
---|
| 1396 | GaussPenta* gaussup=new GaussPenta();
|
---|
| 1397 | for(int i=0;i<numindices;i++){
|
---|
| 1398 | gauss->GaussNode(element->GetElementType(),indices[i]);
|
---|
| 1399 | gaussup->GaussNode(element->GetElementType(),indicesup[i]);
|
---|
[17014] | 1400 |
|
---|
[18612] | 1401 | enthalpy_input->GetInputValue(&enthalpy,gauss);
|
---|
| 1402 | enthalpy_input->GetInputValue(&enthalpyup,gaussup);
|
---|
| 1403 | pressure_input->GetInputValue(&pressure,gauss);
|
---|
| 1404 | pressure_input->GetInputValue(&pressureup,gaussup);
|
---|
[17027] | 1405 | watercolumn_input->GetInputValue(&watercolumn,gauss);
|
---|
[18612] | 1406 | meltingrate_input->GetInputValue(&meltingrate,gauss);
|
---|
| 1407 |
|
---|
| 1408 | state=GetThermalBasalCondition(element, enthalpy, enthalpyup, pressure, pressureup, watercolumn, meltingrate);
|
---|
| 1409 | switch (state) {
|
---|
| 1410 | case 0:
|
---|
| 1411 | // cold, dry base: apply basal surface forcing
|
---|
[18659] | 1412 | vec_spc->SetValue(element->nodes[i]->Sid(),0.,INS_VAL);
|
---|
[18612] | 1413 | break;
|
---|
| 1414 | case 1:
|
---|
| 1415 | // cold, wet base: keep at pressure melting point
|
---|
[18659] | 1416 | vec_spc->SetValue(element->nodes[i]->Sid(),1.,INS_VAL);
|
---|
[18612] | 1417 | break;
|
---|
| 1418 | case 2:
|
---|
| 1419 | // temperate, thin refreezing base: release spc
|
---|
[18659] | 1420 | vec_spc->SetValue(element->nodes[i]->Sid(),0.,INS_VAL);
|
---|
[18612] | 1421 | break;
|
---|
| 1422 | case 3:
|
---|
| 1423 | // temperate, thin melting base: set spc
|
---|
[18659] | 1424 | vec_spc->SetValue(element->nodes[i]->Sid(),1.,INS_VAL);
|
---|
[18612] | 1425 | break;
|
---|
| 1426 | case 4:
|
---|
| 1427 | // temperate, thick melting base: s
|
---|
[18659] | 1428 | vec_spc->SetValue(element->nodes[i]->Sid(),1.,INS_VAL);
|
---|
[18612] | 1429 | break;
|
---|
| 1430 | default:
|
---|
| 1431 | _printf0_(" unknown thermal basal state found!");
|
---|
[17027] | 1432 | }
|
---|
| 1433 | }
|
---|
[17014] | 1434 |
|
---|
[17027] | 1435 | /*Free ressources:*/
|
---|
| 1436 | xDelete<int>(indices);
|
---|
| 1437 | xDelete<int>(indicesup);
|
---|
| 1438 | delete gauss;
|
---|
| 1439 | delete gaussup;
|
---|
[17002] | 1440 | }/*}}}*/
|
---|
[18612] | 1441 | int EnthalpyAnalysis::GetThermalBasalCondition(Element* element, IssmDouble enthalpy, IssmDouble enthalpyup, IssmDouble pressure, IssmDouble pressureup, IssmDouble watercolumn, IssmDouble meltingrate){/*{{{*/
|
---|
[17002] | 1442 |
|
---|
[18612] | 1443 | /* Check if ice in element */
|
---|
| 1444 | if(!element->IsIceInElement()) return -1;
|
---|
| 1445 |
|
---|
| 1446 | /* Only update Constraints at the base of grounded ice*/
|
---|
| 1447 | if(!(element->IsOnBase())) return -1;
|
---|
| 1448 |
|
---|
| 1449 | /*Intermediary*/
|
---|
| 1450 | int state=-1;
|
---|
| 1451 | IssmDouble dt;
|
---|
| 1452 |
|
---|
| 1453 | /*Get parameters and inputs: */
|
---|
| 1454 | element->FindParam(&dt,TimesteppingTimeStepEnum);
|
---|
| 1455 |
|
---|
[18620] | 1456 | if(enthalpy<PureIceEnthalpy(element,pressure)){
|
---|
| 1457 | if(watercolumn<=0.) state=0; // cold, dry base
|
---|
| 1458 | else state=1; // cold, wet base (refreezing)
|
---|
[18612] | 1459 | }
|
---|
[18620] | 1460 | else{
|
---|
| 1461 | if(enthalpyup<PureIceEnthalpy(element,pressureup)){
|
---|
| 1462 | if((dt==0.) && (meltingrate<0.)) state=2; // refreezing temperate base (non-physical, only for steadystate solver)
|
---|
| 1463 | else state=3; // temperate base, but no temperate layer
|
---|
[18612] | 1464 | }
|
---|
[18620] | 1465 | else state=4; // temperate layer with positive thickness
|
---|
[18612] | 1466 | }
|
---|
| 1467 |
|
---|
| 1468 | _assert_(state>=0);
|
---|
| 1469 | return state;
|
---|
| 1470 | }/*}}}*/
|
---|
| 1471 | IssmDouble EnthalpyAnalysis::GetWetIceConductivity(Element* element, IssmDouble enthalpy, IssmDouble pressure){/*{{{*/
|
---|
| 1472 |
|
---|
| 1473 | IssmDouble temperature, waterfraction;
|
---|
| 1474 | IssmDouble kappa_w = 0.6; // thermal conductivity of water (in W/m/K)
|
---|
| 1475 | IssmDouble kappa_i = element->GetMaterialParameter(MaterialsThermalconductivityEnum);
|
---|
| 1476 | element->EnthalpyToThermal(&temperature, &waterfraction, enthalpy, pressure);
|
---|
| 1477 |
|
---|
| 1478 | return (1.-waterfraction)*kappa_i + waterfraction*kappa_w;
|
---|
| 1479 | }/*}}}*/
|
---|
| 1480 |
|
---|
[16888] | 1481 | /*Intermediaries*/
|
---|
| 1482 | IssmDouble EnthalpyAnalysis::EnthalpyDiffusionParameter(Element* element,IssmDouble enthalpy,IssmDouble pressure){/*{{{*/
|
---|
| 1483 |
|
---|
| 1484 | IssmDouble heatcapacity = element->GetMaterialParameter(MaterialsHeatcapacityEnum);
|
---|
| 1485 | IssmDouble temperateiceconductivity = element->GetMaterialParameter(MaterialsTemperateiceconductivityEnum);
|
---|
| 1486 | IssmDouble thermalconductivity = element->GetMaterialParameter(MaterialsThermalconductivityEnum);
|
---|
| 1487 |
|
---|
| 1488 | if(enthalpy < PureIceEnthalpy(element,pressure)){
|
---|
| 1489 | return thermalconductivity/heatcapacity;
|
---|
| 1490 | }
|
---|
| 1491 | else{
|
---|
| 1492 | return temperateiceconductivity/heatcapacity;
|
---|
| 1493 | }
|
---|
| 1494 | }/*}}}*/
|
---|
[16895] | 1495 | IssmDouble EnthalpyAnalysis::EnthalpyDiffusionParameterVolume(Element* element,int enthalpy_enum){/*{{{*/
|
---|
[16888] | 1496 |
|
---|
| 1497 | int iv;
|
---|
| 1498 | IssmDouble lambda; /* fraction of cold ice */
|
---|
[17027] | 1499 | IssmDouble kappa,kappa_c,kappa_t; /* enthalpy conductivities */
|
---|
[16888] | 1500 | IssmDouble Hc,Ht;
|
---|
| 1501 |
|
---|
| 1502 | /*Get pressures and enthalpies on vertices*/
|
---|
| 1503 | int numvertices = element->GetNumberOfVertices();
|
---|
| 1504 | IssmDouble* pressures = xNew<IssmDouble>(numvertices);
|
---|
| 1505 | IssmDouble* enthalpies = xNew<IssmDouble>(numvertices);
|
---|
| 1506 | IssmDouble* PIE = xNew<IssmDouble>(numvertices);
|
---|
| 1507 | IssmDouble* dHpmp = xNew<IssmDouble>(numvertices);
|
---|
| 1508 | element->GetInputListOnVertices(pressures,PressureEnum);
|
---|
[16895] | 1509 | element->GetInputListOnVertices(enthalpies,enthalpy_enum);
|
---|
[16888] | 1510 | for(iv=0;iv<numvertices;iv++){
|
---|
| 1511 | PIE[iv] = PureIceEnthalpy(element,pressures[iv]);
|
---|
| 1512 | dHpmp[iv] = enthalpies[iv]-PIE[iv];
|
---|
| 1513 | }
|
---|
| 1514 |
|
---|
| 1515 | bool allequalsign = true;
|
---|
| 1516 | if(dHpmp[0]<0.){
|
---|
| 1517 | for(iv=1; iv<numvertices;iv++) allequalsign=(allequalsign && (dHpmp[iv]<0.));
|
---|
| 1518 | }
|
---|
| 1519 | else{
|
---|
| 1520 | for(iv=1; iv<numvertices;iv++) allequalsign=(allequalsign && (dHpmp[iv]>=0.));
|
---|
| 1521 | }
|
---|
| 1522 |
|
---|
| 1523 | if(allequalsign){
|
---|
| 1524 | kappa = EnthalpyDiffusionParameter(element,enthalpies[0],pressures[0]);
|
---|
| 1525 | }
|
---|
| 1526 | else{
|
---|
| 1527 | /* return harmonic mean of thermal conductivities, weighted by fraction of cold/temperate ice,
|
---|
| 1528 | cf Patankar 1980, pp44 */
|
---|
| 1529 | kappa_c = EnthalpyDiffusionParameter(element,PureIceEnthalpy(element,0.)-1.,0.);
|
---|
| 1530 | kappa_t = EnthalpyDiffusionParameter(element,PureIceEnthalpy(element,0.)+1.,0.);
|
---|
| 1531 | Hc=0.; Ht=0.;
|
---|
| 1532 | for(iv=0; iv<numvertices;iv++){
|
---|
| 1533 | if(enthalpies[iv]<PIE[iv])
|
---|
| 1534 | Hc+=(PIE[iv]-enthalpies[iv]);
|
---|
| 1535 | else
|
---|
| 1536 | Ht+=(enthalpies[iv]-PIE[iv]);
|
---|
| 1537 | }
|
---|
| 1538 | _assert_((Hc+Ht)>0.);
|
---|
| 1539 | lambda = Hc/(Hc+Ht);
|
---|
[17027] | 1540 | kappa = kappa_c*kappa_t/(lambda*kappa_t+(1.-lambda)*kappa_c); // ==(lambda/kappa_c + (1.-lambda)/kappa_t)^-1
|
---|
| 1541 | }
|
---|
[16888] | 1542 |
|
---|
| 1543 | /*Clean up and return*/
|
---|
| 1544 | xDelete<IssmDouble>(PIE);
|
---|
| 1545 | xDelete<IssmDouble>(dHpmp);
|
---|
| 1546 | xDelete<IssmDouble>(pressures);
|
---|
| 1547 | xDelete<IssmDouble>(enthalpies);
|
---|
| 1548 | return kappa;
|
---|
[17027] | 1549 | }/*}}}*/
|
---|
[16888] | 1550 | IssmDouble EnthalpyAnalysis::PureIceEnthalpy(Element* element,IssmDouble pressure){/*{{{*/
|
---|
| 1551 |
|
---|
| 1552 | IssmDouble heatcapacity = element->GetMaterialParameter(MaterialsHeatcapacityEnum);
|
---|
| 1553 | IssmDouble referencetemperature = element->GetMaterialParameter(ConstantsReferencetemperatureEnum);
|
---|
| 1554 |
|
---|
| 1555 | return heatcapacity*(TMeltingPoint(element,pressure)-referencetemperature);
|
---|
| 1556 | }/*}}}*/
|
---|
| 1557 | IssmDouble EnthalpyAnalysis::TMeltingPoint(Element* element,IssmDouble pressure){/*{{{*/
|
---|
| 1558 |
|
---|
| 1559 | IssmDouble meltingpoint = element->GetMaterialParameter(MaterialsMeltingpointEnum);
|
---|
| 1560 | IssmDouble beta = element->GetMaterialParameter(MaterialsBetaEnum);
|
---|
| 1561 |
|
---|
| 1562 | return meltingpoint-beta*pressure;
|
---|
| 1563 | }/*}}}*/
|
---|