[16534] | 1 | #include "./EnthalpyAnalysis.h"
|
---|
| 2 | #include "../toolkits/toolkits.h"
|
---|
| 3 | #include "../classes/classes.h"
|
---|
| 4 | #include "../shared/shared.h"
|
---|
| 5 | #include "../modules/modules.h"
|
---|
| 6 |
|
---|
| 7 | /*Model processing*/
|
---|
[16539] | 8 | int EnthalpyAnalysis::DofsPerNode(int** doflist,int meshtype,int approximation){/*{{{*/
|
---|
[16534] | 9 | return 1;
|
---|
| 10 | }/*}}}*/
|
---|
[16542] | 11 | void EnthalpyAnalysis::UpdateParameters(Parameters* parameters,IoModel* iomodel,int solution_enum,int analysis_enum){/*{{{*/
|
---|
[16604] | 12 |
|
---|
| 13 | int numoutputs;
|
---|
| 14 | char** requestedoutputs = NULL;
|
---|
| 15 |
|
---|
| 16 | parameters->AddObject(iomodel->CopyConstantObject(ThermalStabilizationEnum));
|
---|
| 17 | parameters->AddObject(iomodel->CopyConstantObject(ThermalIsenthalpyEnum));
|
---|
| 18 | parameters->AddObject(iomodel->CopyConstantObject(ThermalIsdynamicbasalspcEnum));
|
---|
| 19 |
|
---|
| 20 | iomodel->FetchData(&requestedoutputs,&numoutputs,ThermalRequestedOutputsEnum);
|
---|
| 21 | parameters->AddObject(new IntParam(ThermalNumRequestedOutputsEnum,numoutputs));
|
---|
| 22 | if(numoutputs)parameters->AddObject(new StringArrayParam(ThermalRequestedOutputsEnum,requestedoutputs,numoutputs));
|
---|
| 23 | iomodel->DeleteData(&requestedoutputs,numoutputs,ThermalRequestedOutputsEnum);
|
---|
[16539] | 24 | }/*}}}*/
|
---|
| 25 | void EnthalpyAnalysis::UpdateElements(Elements* elements,IoModel* iomodel,int analysis_counter,int analysis_type){/*{{{*/
|
---|
| 26 |
|
---|
| 27 | bool dakota_analysis;
|
---|
| 28 | bool isenthalpy;
|
---|
| 29 |
|
---|
| 30 | /*Now, is the model 3d? otherwise, do nothing: */
|
---|
| 31 | if(iomodel->meshtype==Mesh2DhorizontalEnum)return;
|
---|
| 32 |
|
---|
| 33 | /*Is enthalpy requested?*/
|
---|
| 34 | iomodel->Constant(&isenthalpy,ThermalIsenthalpyEnum);
|
---|
| 35 | if(!isenthalpy) return;
|
---|
| 36 |
|
---|
| 37 | /*Fetch data needed: */
|
---|
| 38 | iomodel->FetchData(3,TemperatureEnum,WaterfractionEnum,PressureEnum);
|
---|
| 39 |
|
---|
| 40 | /*Update elements: */
|
---|
| 41 | int counter=0;
|
---|
| 42 | for(int i=0;i<iomodel->numberofelements;i++){
|
---|
| 43 | if(iomodel->my_elements[i]){
|
---|
| 44 | Element* element=(Element*)elements->GetObjectByOffset(counter);
|
---|
| 45 | element->Update(i,iomodel,analysis_counter,analysis_type,P1Enum);
|
---|
| 46 | counter++;
|
---|
| 47 | }
|
---|
| 48 | }
|
---|
| 49 |
|
---|
| 50 | iomodel->Constant(&dakota_analysis,QmuIsdakotaEnum);
|
---|
| 51 |
|
---|
| 52 | iomodel->FetchDataToInput(elements,ThicknessEnum);
|
---|
| 53 | iomodel->FetchDataToInput(elements,SurfaceEnum);
|
---|
| 54 | iomodel->FetchDataToInput(elements,BedEnum);
|
---|
| 55 | iomodel->FetchDataToInput(elements,FrictionCoefficientEnum);
|
---|
| 56 | iomodel->FetchDataToInput(elements,FrictionPEnum);
|
---|
| 57 | iomodel->FetchDataToInput(elements,FrictionQEnum);
|
---|
| 58 | iomodel->FetchDataToInput(elements,MaskIceLevelsetEnum);
|
---|
| 59 | iomodel->FetchDataToInput(elements,MaskGroundediceLevelsetEnum);
|
---|
| 60 | iomodel->FetchDataToInput(elements,MeshElementonbedEnum);
|
---|
| 61 | iomodel->FetchDataToInput(elements,MeshElementonsurfaceEnum);
|
---|
| 62 | iomodel->FetchDataToInput(elements,FlowequationElementEquationEnum);
|
---|
| 63 | iomodel->FetchDataToInput(elements,MaterialsRheologyBEnum);
|
---|
| 64 | iomodel->FetchDataToInput(elements,MaterialsRheologyNEnum);
|
---|
| 65 | iomodel->FetchDataToInput(elements,PressureEnum);
|
---|
| 66 | iomodel->FetchDataToInput(elements,TemperatureEnum);
|
---|
| 67 | iomodel->FetchDataToInput(elements,WaterfractionEnum);
|
---|
| 68 | iomodel->FetchDataToInput(elements,EnthalpyEnum);
|
---|
| 69 | iomodel->FetchDataToInput(elements,BasalforcingsGeothermalfluxEnum);
|
---|
| 70 | iomodel->FetchDataToInput(elements,WatercolumnEnum);
|
---|
| 71 | iomodel->FetchDataToInput(elements,BasalforcingsMeltingRateEnum);
|
---|
| 72 | iomodel->FetchDataToInput(elements,VxEnum);
|
---|
| 73 | iomodel->FetchDataToInput(elements,VyEnum);
|
---|
| 74 | iomodel->FetchDataToInput(elements,VzEnum);
|
---|
| 75 | InputUpdateFromConstantx(elements,0.,VxMeshEnum);
|
---|
| 76 | InputUpdateFromConstantx(elements,0.,VyMeshEnum);
|
---|
| 77 | InputUpdateFromConstantx(elements,0.,VzMeshEnum);
|
---|
| 78 | if(dakota_analysis){
|
---|
| 79 | elements->InputDuplicate(TemperatureEnum,QmuTemperatureEnum);
|
---|
| 80 | elements->InputDuplicate(BasalforcingsMeltingRateEnum,QmuMeltingEnum);
|
---|
| 81 | elements->InputDuplicate(VxMeshEnum,QmuVxMeshEnum);
|
---|
| 82 | elements->InputDuplicate(VxMeshEnum,QmuVyMeshEnum);
|
---|
| 83 | elements->InputDuplicate(VxMeshEnum,QmuVzMeshEnum);
|
---|
| 84 | }
|
---|
| 85 |
|
---|
| 86 | /*Free data: */
|
---|
| 87 | iomodel->DeleteData(3,TemperatureEnum,WaterfractionEnum,PressureEnum);
|
---|
| 88 | }/*}}}*/
|
---|
[16542] | 89 | void EnthalpyAnalysis::CreateNodes(Nodes* nodes,IoModel* iomodel){/*{{{*/
|
---|
[16539] | 90 |
|
---|
| 91 | if(iomodel->meshtype==Mesh3DEnum) iomodel->FetchData(2,MeshVertexonbedEnum,MeshVertexonsurfaceEnum);
|
---|
[16542] | 92 | ::CreateNodes(nodes,iomodel,EnthalpyAnalysisEnum,P1Enum);
|
---|
[16539] | 93 | iomodel->DeleteData(2,MeshVertexonbedEnum,MeshVertexonsurfaceEnum);
|
---|
| 94 | }/*}}}*/
|
---|
[16542] | 95 | void EnthalpyAnalysis::CreateConstraints(Constraints* constraints,IoModel* iomodel){/*{{{*/
|
---|
[16539] | 96 |
|
---|
| 97 | /*Intermediary*/
|
---|
| 98 | int count;
|
---|
| 99 | int M,N;
|
---|
| 100 | bool spcpresent = false;
|
---|
| 101 | IssmDouble heatcapacity;
|
---|
| 102 | IssmDouble referencetemperature;
|
---|
| 103 |
|
---|
| 104 | /*Output*/
|
---|
| 105 | IssmDouble *spcvector = NULL;
|
---|
| 106 | IssmDouble* times=NULL;
|
---|
| 107 | IssmDouble* values=NULL;
|
---|
| 108 |
|
---|
| 109 | /*Fetch parameters: */
|
---|
| 110 | iomodel->Constant(&heatcapacity,MaterialsHeatcapacityEnum);
|
---|
| 111 | iomodel->Constant(&referencetemperature,ConstantsReferencetemperatureEnum);
|
---|
| 112 |
|
---|
| 113 | /*return if 2d mesh*/
|
---|
| 114 | if(iomodel->meshtype==Mesh2DhorizontalEnum) return;
|
---|
| 115 |
|
---|
| 116 | /*Fetch data: */
|
---|
| 117 | iomodel->FetchData(&spcvector,&M,&N,ThermalSpctemperatureEnum);
|
---|
| 118 |
|
---|
| 119 | //FIX ME: SHOULD USE IOMODELCREATECONSTRAINTS
|
---|
| 120 | /*Transient or static?:*/
|
---|
| 121 | if(M==iomodel->numberofvertices){
|
---|
| 122 | /*static: just create Constraints objects*/
|
---|
| 123 | count=0;
|
---|
| 124 |
|
---|
| 125 | for(int i=0;i<iomodel->numberofvertices;i++){
|
---|
| 126 | /*keep only this partition's nodes:*/
|
---|
| 127 | if((iomodel->my_vertices[i])){
|
---|
| 128 |
|
---|
| 129 | if (!xIsNan<IssmDouble>(spcvector[i])){
|
---|
| 130 |
|
---|
| 131 | constraints->AddObject(new SpcStatic(iomodel->constraintcounter+count+1,iomodel->nodecounter+i+1,1,heatcapacity*(spcvector[i]-referencetemperature),EnthalpyAnalysisEnum));
|
---|
| 132 | count++;
|
---|
| 133 |
|
---|
| 134 | }
|
---|
| 135 | }
|
---|
| 136 | }
|
---|
| 137 | }
|
---|
| 138 | else if (M==(iomodel->numberofvertices+1)){
|
---|
| 139 | /*transient: create transient SpcTransient objects. Same logic, except we need to retrieve
|
---|
| 140 | * various times and values to initialize an SpcTransient object: */
|
---|
| 141 | count=0;
|
---|
| 142 |
|
---|
| 143 | /*figure out times: */
|
---|
| 144 | times=xNew<IssmDouble>(N);
|
---|
| 145 | for(int j=0;j<N;j++){
|
---|
| 146 | times[j]=spcvector[(M-1)*N+j];
|
---|
| 147 | }
|
---|
| 148 |
|
---|
| 149 | /*Create constraints from x,y,z: */
|
---|
| 150 | for(int i=0;i<iomodel->numberofvertices;i++){
|
---|
| 151 |
|
---|
| 152 | /*keep only this partition's nodes:*/
|
---|
| 153 | if((iomodel->my_vertices[i])){
|
---|
| 154 |
|
---|
| 155 | /*figure out times and values: */
|
---|
| 156 | values=xNew<IssmDouble>(N);
|
---|
| 157 | spcpresent=false;
|
---|
| 158 | for(int j=0;j<N;j++){
|
---|
| 159 | values[j]=heatcapacity*(spcvector[i*N+j]-referencetemperature);
|
---|
| 160 | if(!xIsNan<IssmDouble>(values[j]))spcpresent=true; //NaN means no spc by default
|
---|
| 161 | }
|
---|
| 162 |
|
---|
| 163 | if(spcpresent){
|
---|
| 164 | constraints->AddObject(new SpcTransient(iomodel->constraintcounter+count+1,iomodel->nodecounter+i+1,1,N,times,values,EnthalpyAnalysisEnum));
|
---|
| 165 | count++;
|
---|
| 166 | }
|
---|
| 167 | xDelete<IssmDouble>(values);
|
---|
| 168 | }
|
---|
| 169 | }
|
---|
| 170 | }
|
---|
| 171 | else{
|
---|
| 172 | _error_("Size of field " << EnumToStringx(ThermalSpctemperatureEnum) << " not supported");
|
---|
| 173 | }
|
---|
| 174 |
|
---|
| 175 | /*Free ressources:*/
|
---|
| 176 | iomodel->DeleteData(spcvector,ThermalSpctemperatureEnum);
|
---|
| 177 | xDelete<IssmDouble>(times);
|
---|
| 178 | xDelete<IssmDouble>(values);
|
---|
| 179 | }/*}}}*/
|
---|
[16542] | 180 | void EnthalpyAnalysis::CreateLoads(Loads* loads, IoModel* iomodel){/*{{{*/
|
---|
[16539] | 181 |
|
---|
| 182 | /*No loads */
|
---|
| 183 | }/*}}}*/
|
---|
[16675] | 184 |
|
---|
[16782] | 185 | /*Finite Element Analysis*/
|
---|
| 186 | ElementMatrix* EnthalpyAnalysis::CreateKMatrix(Element* element){/*{{{*/
|
---|
| 187 | _error_("not implemented yet");
|
---|
| 188 | }/*}}}*/
|
---|
| 189 | ElementVector* EnthalpyAnalysis::CreatePVector(Element* element){/*{{{*/
|
---|
[16812] | 190 |
|
---|
| 191 | /*compute all load vectors for this element*/
|
---|
| 192 | ElementVector* pe1=CreatePVectorVolume(element);
|
---|
| 193 | ElementVector* pe2=CreatePVectorSheet(element);
|
---|
| 194 | ElementVector* pe3=CreatePVectorShelf(element);
|
---|
| 195 | ElementVector* pe =new ElementVector(pe1,pe2,pe3);
|
---|
| 196 |
|
---|
| 197 | /*clean-up and return*/
|
---|
| 198 | delete pe1;
|
---|
| 199 | delete pe2;
|
---|
| 200 | delete pe3;
|
---|
| 201 | return pe;
|
---|
[16782] | 202 | }/*}}}*/
|
---|
[16812] | 203 | ElementVector* EnthalpyAnalysis::CreatePVectorVolume(Element* element){/*{{{*/
|
---|
| 204 |
|
---|
| 205 | /*Intermediaries*/
|
---|
| 206 | int stabilization;
|
---|
| 207 | IssmDouble Jdet,phi,dt;
|
---|
| 208 | IssmDouble enthalpy;
|
---|
| 209 | IssmDouble kappa,tau_parameter,diameter;
|
---|
| 210 | IssmDouble u,v,w;
|
---|
| 211 | IssmDouble scalar_def,scalar_transient;
|
---|
| 212 | IssmDouble* xyz_list = NULL;
|
---|
| 213 |
|
---|
| 214 | /*Fetch number of nodes and dof for this finite element*/
|
---|
| 215 | int numnodes = element->GetNumberOfNodes();
|
---|
| 216 | int numvertices = element->GetNumberOfVertices();
|
---|
| 217 |
|
---|
| 218 | /*Initialize Element vector*/
|
---|
| 219 | ElementVector* pe = element->NewElementVector();
|
---|
| 220 | IssmDouble* basis = xNew<IssmDouble>(numnodes);
|
---|
| 221 | IssmDouble* dbasis = xNew<IssmDouble>(3*numnodes);
|
---|
| 222 | IssmDouble* pressure = xNew<IssmDouble>(numvertices);
|
---|
| 223 | IssmDouble* enthalpypicard = xNew<IssmDouble>(numvertices);
|
---|
| 224 |
|
---|
| 225 | /*Retrieve all inputs and parameters*/
|
---|
| 226 | element->GetVerticesCoordinates(&xyz_list);
|
---|
| 227 | IssmDouble rho_ice = element->GetMaterialParameter(MaterialsRhoIceEnum);
|
---|
| 228 | IssmDouble thermalconductivity = element->GetMaterialParameter(MaterialsThermalconductivityEnum);
|
---|
| 229 | element->FindParam(&dt,TimesteppingTimeStepEnum);
|
---|
| 230 | element->FindParam(&stabilization,ThermalStabilizationEnum);
|
---|
| 231 | Input* vx_input=element->GetInput(VxEnum); _assert_(vx_input);
|
---|
| 232 | Input* vy_input=element->GetInput(VyEnum); _assert_(vy_input);
|
---|
| 233 | Input* vz_input=element->GetInput(VzEnum); _assert_(vz_input);
|
---|
| 234 | Input* enthalpy_input = NULL;
|
---|
| 235 | if(reCast<bool,IssmDouble>(dt)){enthalpy_input = element->GetInput(EnthalpyEnum); _assert_(enthalpy_input);}
|
---|
| 236 | if(stabilization==2){
|
---|
| 237 | element->GetInputListOnVertices(enthalpypicard,EnthalpyPicardEnum);
|
---|
| 238 | element->GetInputListOnVertices(pressure,PressureEnum);
|
---|
| 239 | diameter=element->MinEdgeLength(xyz_list);
|
---|
| 240 | }
|
---|
| 241 |
|
---|
| 242 | /* Start looping on the number of gaussian points: */
|
---|
| 243 | Gauss* gauss=element->NewGauss(3);
|
---|
| 244 | for(int ig=gauss->begin();ig<gauss->end();ig++){
|
---|
| 245 | gauss->GaussPoint(ig);
|
---|
| 246 |
|
---|
| 247 | element->JacobianDeterminant(&Jdet,xyz_list,gauss);
|
---|
| 248 | element->NodalFunctions(basis,gauss);
|
---|
| 249 | element->ViscousHeating(&phi,xyz_list,gauss,vx_input,vy_input,vz_input);
|
---|
| 250 |
|
---|
| 251 | scalar_def=phi/rho_ice*Jdet*gauss->weight;
|
---|
| 252 | if(reCast<bool,IssmDouble>(dt)) scalar_def=scalar_def*dt;
|
---|
| 253 |
|
---|
| 254 | /*TODO: add -beta*laplace T_m(p)*/
|
---|
| 255 | for(int i=0;i<numnodes;i++) pe->values[i]+=scalar_def*basis[i];
|
---|
| 256 |
|
---|
| 257 | /* Build transient now */
|
---|
| 258 | if(reCast<bool,IssmDouble>(dt)){
|
---|
| 259 | enthalpy_input->GetInputValue(&enthalpy, gauss);
|
---|
| 260 | scalar_transient=enthalpy*Jdet*gauss->weight;
|
---|
| 261 | for(int i=0;i<numnodes;i++) pe->values[i]+=scalar_transient*basis[i];
|
---|
| 262 | }
|
---|
| 263 |
|
---|
| 264 | if(stabilization==2){
|
---|
| 265 | element->NodalFunctionsDerivatives(dbasis,xyz_list,gauss);
|
---|
| 266 |
|
---|
| 267 | vx_input->GetInputValue(&u,gauss);
|
---|
| 268 | vy_input->GetInputValue(&v,gauss);
|
---|
| 269 | vz_input->GetInputValue(&w,gauss);
|
---|
| 270 | kappa = element->EnthalpyDiffusionParameterVolume(numvertices,enthalpypicard,pressure) / rho_ice;
|
---|
| 271 | tau_parameter = element->StabilizationParameter(u,v,w,diameter,kappa);
|
---|
| 272 |
|
---|
| 273 | for(int i=0;i<numnodes;i++) pe->values[i]+=tau_parameter*scalar_def*(u*dbasis[0*3+i]+v*dbasis[1*3+i]+w*dbasis[2*3+i]);
|
---|
| 274 | if(reCast<bool,IssmDouble>(dt)){
|
---|
| 275 | for(int i=0;i<numnodes;i++) pe->values[i]+=tau_parameter*scalar_transient*(u*dbasis[0*3+i]+v*dbasis[1*3+i]+w*dbasis[2*3+i]);
|
---|
| 276 | }
|
---|
| 277 | }
|
---|
| 278 | }
|
---|
| 279 |
|
---|
| 280 | /*Clean up and return*/
|
---|
| 281 | xDelete<IssmDouble>(basis);
|
---|
| 282 | xDelete<IssmDouble>(dbasis);
|
---|
| 283 | xDelete<IssmDouble>(pressure);
|
---|
| 284 | xDelete<IssmDouble>(enthalpypicard);
|
---|
| 285 | xDelete<IssmDouble>(xyz_list);
|
---|
| 286 | delete gauss;
|
---|
| 287 | return pe;
|
---|
| 288 |
|
---|
| 289 | }/*}}}*/
|
---|
| 290 | ElementVector* EnthalpyAnalysis::CreatePVectorSheet(Element* element){/*{{{*/
|
---|
| 291 | return NULL;
|
---|
| 292 | }/*}}}*/
|
---|
| 293 | ElementVector* EnthalpyAnalysis::CreatePVectorShelf(Element* element){/*{{{*/
|
---|
| 294 |
|
---|
[16813] | 295 | IssmDouble h_pmp,dt,Jdet,scalar_ocean,pressure;
|
---|
[16812] | 296 | IssmDouble *xyz_list_base = NULL;
|
---|
| 297 |
|
---|
| 298 | /*Get basal element*/
|
---|
| 299 | if(!element->IsOnBed() || !element->IsFloating()) return NULL;
|
---|
| 300 |
|
---|
| 301 | /*Fetch number of nodes for this finite element*/
|
---|
| 302 | int numnodes = element->GetNumberOfNodes();
|
---|
| 303 |
|
---|
| 304 | /*Initialize vectors*/
|
---|
| 305 | ElementVector* pe = element->NewElementVector();
|
---|
| 306 | IssmDouble* basis = xNew<IssmDouble>(numnodes);
|
---|
| 307 |
|
---|
| 308 | /*Retrieve all inputs and parameters*/
|
---|
| 309 | element->GetVerticesCoordinatesBase(&xyz_list_base);
|
---|
| 310 | element->FindParam(&dt,TimesteppingTimeStepEnum);
|
---|
| 311 | Input* pressure_input=element->GetInput(PressureEnum); _assert_(pressure_input);
|
---|
| 312 | IssmDouble gravity = element->GetMaterialParameter(ConstantsGEnum);
|
---|
| 313 | IssmDouble rho_water = element->GetMaterialParameter(MaterialsRhoWaterEnum);
|
---|
| 314 | IssmDouble rho_ice = element->GetMaterialParameter(MaterialsRhoIceEnum);
|
---|
| 315 | IssmDouble heatcapacity = element->GetMaterialParameter(MaterialsHeatcapacityEnum);
|
---|
| 316 | IssmDouble mixed_layer_capacity= element->GetMaterialParameter(MaterialsMixedLayerCapacityEnum);
|
---|
| 317 | IssmDouble thermal_exchange_vel= element->GetMaterialParameter(MaterialsThermalExchangeVelocityEnum);
|
---|
| 318 |
|
---|
| 319 | /* Start looping on the number of gaussian points: */
|
---|
| 320 | Gauss* gauss=element->NewGaussBase(2);
|
---|
| 321 | for(int ig=gauss->begin();ig<gauss->end();ig++){
|
---|
| 322 | gauss->GaussPoint(ig);
|
---|
| 323 |
|
---|
| 324 | element->JacobianDeterminantBase(&Jdet,xyz_list_base,gauss);
|
---|
| 325 | element->NodalFunctions(basis,gauss);
|
---|
| 326 |
|
---|
| 327 | pressure_input->GetInputValue(&pressure,gauss);
|
---|
[16813] | 328 | h_pmp=element->PureIceEnthalpy(pressure);
|
---|
[16812] | 329 |
|
---|
[16813] | 330 | scalar_ocean=gauss->weight*Jdet*rho_water*mixed_layer_capacity*thermal_exchange_vel*h_pmp/(heatcapacity*rho_ice);
|
---|
[16812] | 331 | if(reCast<bool,IssmDouble>(dt)) scalar_ocean=dt*scalar_ocean;
|
---|
| 332 |
|
---|
| 333 | for(int i=0;i<numnodes;i++) pe->values[i]+=scalar_ocean*basis[i];
|
---|
| 334 | }
|
---|
| 335 |
|
---|
| 336 | /*Clean up and return*/
|
---|
| 337 | delete gauss;
|
---|
| 338 | xDelete<IssmDouble>(basis);
|
---|
| 339 | xDelete<IssmDouble>(xyz_list_base);
|
---|
| 340 | return pe;
|
---|
| 341 | }/*}}}*/
|
---|
[16675] | 342 | void EnthalpyAnalysis::GetSolutionFromInputs(Vector<IssmDouble>* solution,Element* element){/*{{{*/
|
---|
| 343 | element->GetSolutionFromInputsOneDof(solution,EnthalpyEnum);
|
---|
| 344 | }/*}}}*/
|
---|
[16684] | 345 | void EnthalpyAnalysis::InputUpdateFromSolution(IssmDouble* solution,Element* element){/*{{{*/
|
---|
[16734] | 346 |
|
---|
| 347 | bool converged;
|
---|
| 348 | int i,rheology_law;
|
---|
| 349 | IssmDouble B_average,s_average,T_average=0.,P_average=0.;
|
---|
| 350 | int *doflist = NULL;
|
---|
| 351 | IssmDouble *xyz_list = NULL;
|
---|
| 352 |
|
---|
| 353 | /*Fetch number of nodes and dof for this finite element*/
|
---|
| 354 | int numnodes = element->GetNumberOfNodes();
|
---|
| 355 |
|
---|
| 356 | /*Fetch dof list and allocate solution vector*/
|
---|
| 357 | element->GetDofList(&doflist,NoneApproximationEnum,GsetEnum);
|
---|
| 358 | IssmDouble* values = xNew<IssmDouble>(numnodes);
|
---|
| 359 | IssmDouble* pressure = xNew<IssmDouble>(numnodes);
|
---|
[16745] | 360 | IssmDouble* surface = xNew<IssmDouble>(numnodes);
|
---|
| 361 | IssmDouble* B = xNew<IssmDouble>(numnodes);
|
---|
[16734] | 362 | IssmDouble* temperature = xNew<IssmDouble>(numnodes);
|
---|
| 363 | IssmDouble* waterfraction = xNew<IssmDouble>(numnodes);
|
---|
| 364 |
|
---|
| 365 | /*Use the dof list to index into the solution vector: */
|
---|
| 366 | for(i=0;i<numnodes;i++){
|
---|
| 367 | values[i]=solution[doflist[i]];
|
---|
| 368 |
|
---|
| 369 | /*Check solution*/
|
---|
| 370 | if(xIsNan<IssmDouble>(values[i])) _error_("NaN found in solution vector");
|
---|
| 371 | }
|
---|
| 372 |
|
---|
| 373 | /*Get all inputs and parameters*/
|
---|
| 374 | element->GetInputValue(&converged,ConvergedEnum);
|
---|
[16745] | 375 | element->GetInputListOnNodes(&pressure[0],PressureEnum);
|
---|
[16734] | 376 | if(converged){
|
---|
| 377 | for(i=0;i<numnodes;i++){
|
---|
| 378 | element->EnthalpyToThermal(&temperature[i],&waterfraction[i],values[i],pressure[i]);
|
---|
| 379 | if(waterfraction[i]<0.) _error_("Negative water fraction found in solution vector");
|
---|
[16837] | 380 | if(waterfraction[i]>1.) _error_("Water fraction >1 found in solution vector");
|
---|
[16734] | 381 | }
|
---|
| 382 | element->AddInput(EnthalpyEnum,values,P1Enum);
|
---|
| 383 | element->AddInput(WaterfractionEnum,waterfraction,P1Enum);
|
---|
| 384 | element->AddInput(TemperatureEnum,temperature,P1Enum);
|
---|
| 385 |
|
---|
| 386 | /*Update Rheology only if converged (we must make sure that the temperature is below melting point
|
---|
| 387 | * otherwise the rheology could be negative*/
|
---|
| 388 | element->FindParam(&rheology_law,MaterialsRheologyLawEnum);
|
---|
[16745] | 389 | element->GetInputListOnNodes(&surface[0],SurfaceEnum);
|
---|
[16734] | 390 | switch(rheology_law){
|
---|
| 391 | case NoneEnum:
|
---|
| 392 | /*Do nothing: B is not temperature dependent*/
|
---|
| 393 | break;
|
---|
| 394 | case PatersonEnum:
|
---|
[16748] | 395 | for(i=0;i<numnodes;i++) B[i]=Paterson(temperature[i]);
|
---|
[16745] | 396 | element->AddMaterialInput(MaterialsRheologyBEnum,&B[0],P1Enum);
|
---|
[16734] | 397 | break;
|
---|
[16745] | 398 | case ArrheniusEnum:
|
---|
[16734] | 399 | element->GetVerticesCoordinates(&xyz_list);
|
---|
[16748] | 400 | for(i=0;i<numnodes;i++) B[i]=Arrhenius(temperature[i],surface[i]-xyz_list[i*3+2],element->GetMaterialParameter(MaterialsRheologyNEnum));
|
---|
[16745] | 401 | element->AddMaterialInput(MaterialsRheologyBEnum,&B[0],P1Enum);
|
---|
[16734] | 402 | break;
|
---|
| 403 | case LliboutryDuvalEnum:
|
---|
[16750] | 404 | for(i=0;i<numnodes;i++) B[i]=LliboutryDuval(values[i],pressure[i],element->GetMaterialParameter(MaterialsRheologyNEnum),element->GetMaterialParameter(MaterialsBetaEnum),element->GetMaterialParameter(ConstantsReferencetemperatureEnum),element->GetMaterialParameter(MaterialsHeatcapacityEnum),element->GetMaterialParameter(MaterialsLatentheatEnum));
|
---|
[16745] | 405 | element->AddMaterialInput(MaterialsRheologyBEnum,&B[0],P1Enum);
|
---|
| 406 | break;
|
---|
| 407 | default: _error_("Rheology law " << EnumToStringx(rheology_law) << " not supported yet");
|
---|
[16734] | 408 | }
|
---|
| 409 | }
|
---|
| 410 | else{
|
---|
| 411 | element->AddInput(EnthalpyPicardEnum,values,P1Enum);
|
---|
| 412 | }
|
---|
| 413 |
|
---|
| 414 | /*Free ressources:*/
|
---|
| 415 | xDelete<IssmDouble>(values);
|
---|
| 416 | xDelete<IssmDouble>(pressure);
|
---|
[16745] | 417 | xDelete<IssmDouble>(surface);
|
---|
| 418 | xDelete<IssmDouble>(B);
|
---|
[16734] | 419 | xDelete<IssmDouble>(temperature);
|
---|
| 420 | xDelete<IssmDouble>(waterfraction);
|
---|
| 421 | xDelete<IssmDouble>(xyz_list);
|
---|
| 422 | xDelete<int>(doflist);
|
---|
[16684] | 423 | }/*}}}*/
|
---|