source: issm/trunk-jpl/externalpackages/petsc-dev/src/externalpackages/fblaslapack-3.1.1/lapack/zlatbs.f@ 11896

Last change on this file since 11896 was 11896, checked in by habbalf, 13 years ago

petsc-dev : Petsc development code in external packages. Mercurial updates

File size: 28.2 KB
Line 
1 SUBROUTINE ZLATBS( UPLO, TRANS, DIAG, NORMIN, N, KD, AB, LDAB, X,
2 $ SCALE, CNORM, INFO )
3*
4* -- LAPACK auxiliary routine (version 3.1) --
5* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
6* November 2006
7*
8* .. Scalar Arguments ..
9 CHARACTER DIAG, NORMIN, TRANS, UPLO
10 INTEGER INFO, KD, LDAB, N
11 DOUBLE PRECISION SCALE
12* ..
13* .. Array Arguments ..
14 DOUBLE PRECISION CNORM( * )
15 COMPLEX*16 AB( LDAB, * ), X( * )
16* ..
17*
18* Purpose
19* =======
20*
21* ZLATBS solves one of the triangular systems
22*
23* A * x = s*b, A**T * x = s*b, or A**H * x = s*b,
24*
25* with scaling to prevent overflow, where A is an upper or lower
26* triangular band matrix. Here A' denotes the transpose of A, x and b
27* are n-element vectors, and s is a scaling factor, usually less than
28* or equal to 1, chosen so that the components of x will be less than
29* the overflow threshold. If the unscaled problem will not cause
30* overflow, the Level 2 BLAS routine ZTBSV is called. If the matrix A
31* is singular (A(j,j) = 0 for some j), then s is set to 0 and a
32* non-trivial solution to A*x = 0 is returned.
33*
34* Arguments
35* =========
36*
37* UPLO (input) CHARACTER*1
38* Specifies whether the matrix A is upper or lower triangular.
39* = 'U': Upper triangular
40* = 'L': Lower triangular
41*
42* TRANS (input) CHARACTER*1
43* Specifies the operation applied to A.
44* = 'N': Solve A * x = s*b (No transpose)
45* = 'T': Solve A**T * x = s*b (Transpose)
46* = 'C': Solve A**H * x = s*b (Conjugate transpose)
47*
48* DIAG (input) CHARACTER*1
49* Specifies whether or not the matrix A is unit triangular.
50* = 'N': Non-unit triangular
51* = 'U': Unit triangular
52*
53* NORMIN (input) CHARACTER*1
54* Specifies whether CNORM has been set or not.
55* = 'Y': CNORM contains the column norms on entry
56* = 'N': CNORM is not set on entry. On exit, the norms will
57* be computed and stored in CNORM.
58*
59* N (input) INTEGER
60* The order of the matrix A. N >= 0.
61*
62* KD (input) INTEGER
63* The number of subdiagonals or superdiagonals in the
64* triangular matrix A. KD >= 0.
65*
66* AB (input) COMPLEX*16 array, dimension (LDAB,N)
67* The upper or lower triangular band matrix A, stored in the
68* first KD+1 rows of the array. The j-th column of A is stored
69* in the j-th column of the array AB as follows:
70* if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
71* if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd).
72*
73* LDAB (input) INTEGER
74* The leading dimension of the array AB. LDAB >= KD+1.
75*
76* X (input/output) COMPLEX*16 array, dimension (N)
77* On entry, the right hand side b of the triangular system.
78* On exit, X is overwritten by the solution vector x.
79*
80* SCALE (output) DOUBLE PRECISION
81* The scaling factor s for the triangular system
82* A * x = s*b, A**T * x = s*b, or A**H * x = s*b.
83* If SCALE = 0, the matrix A is singular or badly scaled, and
84* the vector x is an exact or approximate solution to A*x = 0.
85*
86* CNORM (input or output) DOUBLE PRECISION array, dimension (N)
87*
88* If NORMIN = 'Y', CNORM is an input argument and CNORM(j)
89* contains the norm of the off-diagonal part of the j-th column
90* of A. If TRANS = 'N', CNORM(j) must be greater than or equal
91* to the infinity-norm, and if TRANS = 'T' or 'C', CNORM(j)
92* must be greater than or equal to the 1-norm.
93*
94* If NORMIN = 'N', CNORM is an output argument and CNORM(j)
95* returns the 1-norm of the offdiagonal part of the j-th column
96* of A.
97*
98* INFO (output) INTEGER
99* = 0: successful exit
100* < 0: if INFO = -k, the k-th argument had an illegal value
101*
102* Further Details
103* ======= =======
104*
105* A rough bound on x is computed; if that is less than overflow, ZTBSV
106* is called, otherwise, specific code is used which checks for possible
107* overflow or divide-by-zero at every operation.
108*
109* A columnwise scheme is used for solving A*x = b. The basic algorithm
110* if A is lower triangular is
111*
112* x[1:n] := b[1:n]
113* for j = 1, ..., n
114* x(j) := x(j) / A(j,j)
115* x[j+1:n] := x[j+1:n] - x(j) * A[j+1:n,j]
116* end
117*
118* Define bounds on the components of x after j iterations of the loop:
119* M(j) = bound on x[1:j]
120* G(j) = bound on x[j+1:n]
121* Initially, let M(0) = 0 and G(0) = max{x(i), i=1,...,n}.
122*
123* Then for iteration j+1 we have
124* M(j+1) <= G(j) / | A(j+1,j+1) |
125* G(j+1) <= G(j) + M(j+1) * | A[j+2:n,j+1] |
126* <= G(j) ( 1 + CNORM(j+1) / | A(j+1,j+1) | )
127*
128* where CNORM(j+1) is greater than or equal to the infinity-norm of
129* column j+1 of A, not counting the diagonal. Hence
130*
131* G(j) <= G(0) product ( 1 + CNORM(i) / | A(i,i) | )
132* 1<=i<=j
133* and
134*
135* |x(j)| <= ( G(0) / |A(j,j)| ) product ( 1 + CNORM(i) / |A(i,i)| )
136* 1<=i< j
137*
138* Since |x(j)| <= M(j), we use the Level 2 BLAS routine ZTBSV if the
139* reciprocal of the largest M(j), j=1,..,n, is larger than
140* max(underflow, 1/overflow).
141*
142* The bound on x(j) is also used to determine when a step in the
143* columnwise method can be performed without fear of overflow. If
144* the computed bound is greater than a large constant, x is scaled to
145* prevent overflow, but if the bound overflows, x is set to 0, x(j) to
146* 1, and scale to 0, and a non-trivial solution to A*x = 0 is found.
147*
148* Similarly, a row-wise scheme is used to solve A**T *x = b or
149* A**H *x = b. The basic algorithm for A upper triangular is
150*
151* for j = 1, ..., n
152* x(j) := ( b(j) - A[1:j-1,j]' * x[1:j-1] ) / A(j,j)
153* end
154*
155* We simultaneously compute two bounds
156* G(j) = bound on ( b(i) - A[1:i-1,i]' * x[1:i-1] ), 1<=i<=j
157* M(j) = bound on x(i), 1<=i<=j
158*
159* The initial values are G(0) = 0, M(0) = max{b(i), i=1,..,n}, and we
160* add the constraint G(j) >= G(j-1) and M(j) >= M(j-1) for j >= 1.
161* Then the bound on x(j) is
162*
163* M(j) <= M(j-1) * ( 1 + CNORM(j) ) / | A(j,j) |
164*
165* <= M(0) * product ( ( 1 + CNORM(i) ) / |A(i,i)| )
166* 1<=i<=j
167*
168* and we can safely call ZTBSV if 1/M(n) and 1/G(n) are both greater
169* than max(underflow, 1/overflow).
170*
171* =====================================================================
172*
173* .. Parameters ..
174 DOUBLE PRECISION ZERO, HALF, ONE, TWO
175 PARAMETER ( ZERO = 0.0D+0, HALF = 0.5D+0, ONE = 1.0D+0,
176 $ TWO = 2.0D+0 )
177* ..
178* .. Local Scalars ..
179 LOGICAL NOTRAN, NOUNIT, UPPER
180 INTEGER I, IMAX, J, JFIRST, JINC, JLAST, JLEN, MAIND
181 DOUBLE PRECISION BIGNUM, GROW, REC, SMLNUM, TJJ, TMAX, TSCAL,
182 $ XBND, XJ, XMAX
183 COMPLEX*16 CSUMJ, TJJS, USCAL, ZDUM
184* ..
185* .. External Functions ..
186 LOGICAL LSAME
187 INTEGER IDAMAX, IZAMAX
188 DOUBLE PRECISION DLAMCH, DZASUM
189 COMPLEX*16 ZDOTC, ZDOTU, ZLADIV
190 EXTERNAL LSAME, IDAMAX, IZAMAX, DLAMCH, DZASUM, ZDOTC,
191 $ ZDOTU, ZLADIV
192* ..
193* .. External Subroutines ..
194 EXTERNAL DSCAL, XERBLA, ZAXPY, ZDSCAL, ZTBSV
195* ..
196* .. Intrinsic Functions ..
197 INTRINSIC ABS, DBLE, DCMPLX, DCONJG, DIMAG, MAX, MIN
198* ..
199* .. Statement Functions ..
200 DOUBLE PRECISION CABS1, CABS2
201* ..
202* .. Statement Function definitions ..
203 CABS1( ZDUM ) = ABS( DBLE( ZDUM ) ) + ABS( DIMAG( ZDUM ) )
204 CABS2( ZDUM ) = ABS( DBLE( ZDUM ) / 2.D0 ) +
205 $ ABS( DIMAG( ZDUM ) / 2.D0 )
206* ..
207* .. Executable Statements ..
208*
209 INFO = 0
210 UPPER = LSAME( UPLO, 'U' )
211 NOTRAN = LSAME( TRANS, 'N' )
212 NOUNIT = LSAME( DIAG, 'N' )
213*
214* Test the input parameters.
215*
216 IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
217 INFO = -1
218 ELSE IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) .AND. .NOT.
219 $ LSAME( TRANS, 'C' ) ) THEN
220 INFO = -2
221 ELSE IF( .NOT.NOUNIT .AND. .NOT.LSAME( DIAG, 'U' ) ) THEN
222 INFO = -3
223 ELSE IF( .NOT.LSAME( NORMIN, 'Y' ) .AND. .NOT.
224 $ LSAME( NORMIN, 'N' ) ) THEN
225 INFO = -4
226 ELSE IF( N.LT.0 ) THEN
227 INFO = -5
228 ELSE IF( KD.LT.0 ) THEN
229 INFO = -6
230 ELSE IF( LDAB.LT.KD+1 ) THEN
231 INFO = -8
232 END IF
233 IF( INFO.NE.0 ) THEN
234 CALL XERBLA( 'ZLATBS', -INFO )
235 RETURN
236 END IF
237*
238* Quick return if possible
239*
240 IF( N.EQ.0 )
241 $ RETURN
242*
243* Determine machine dependent parameters to control overflow.
244*
245 SMLNUM = DLAMCH( 'Safe minimum' )
246 BIGNUM = ONE / SMLNUM
247 CALL DLABAD( SMLNUM, BIGNUM )
248 SMLNUM = SMLNUM / DLAMCH( 'Precision' )
249 BIGNUM = ONE / SMLNUM
250 SCALE = ONE
251*
252 IF( LSAME( NORMIN, 'N' ) ) THEN
253*
254* Compute the 1-norm of each column, not including the diagonal.
255*
256 IF( UPPER ) THEN
257*
258* A is upper triangular.
259*
260 DO 10 J = 1, N
261 JLEN = MIN( KD, J-1 )
262 CNORM( J ) = DZASUM( JLEN, AB( KD+1-JLEN, J ), 1 )
263 10 CONTINUE
264 ELSE
265*
266* A is lower triangular.
267*
268 DO 20 J = 1, N
269 JLEN = MIN( KD, N-J )
270 IF( JLEN.GT.0 ) THEN
271 CNORM( J ) = DZASUM( JLEN, AB( 2, J ), 1 )
272 ELSE
273 CNORM( J ) = ZERO
274 END IF
275 20 CONTINUE
276 END IF
277 END IF
278*
279* Scale the column norms by TSCAL if the maximum element in CNORM is
280* greater than BIGNUM/2.
281*
282 IMAX = IDAMAX( N, CNORM, 1 )
283 TMAX = CNORM( IMAX )
284 IF( TMAX.LE.BIGNUM*HALF ) THEN
285 TSCAL = ONE
286 ELSE
287 TSCAL = HALF / ( SMLNUM*TMAX )
288 CALL DSCAL( N, TSCAL, CNORM, 1 )
289 END IF
290*
291* Compute a bound on the computed solution vector to see if the
292* Level 2 BLAS routine ZTBSV can be used.
293*
294 XMAX = ZERO
295 DO 30 J = 1, N
296 XMAX = MAX( XMAX, CABS2( X( J ) ) )
297 30 CONTINUE
298 XBND = XMAX
299 IF( NOTRAN ) THEN
300*
301* Compute the growth in A * x = b.
302*
303 IF( UPPER ) THEN
304 JFIRST = N
305 JLAST = 1
306 JINC = -1
307 MAIND = KD + 1
308 ELSE
309 JFIRST = 1
310 JLAST = N
311 JINC = 1
312 MAIND = 1
313 END IF
314*
315 IF( TSCAL.NE.ONE ) THEN
316 GROW = ZERO
317 GO TO 60
318 END IF
319*
320 IF( NOUNIT ) THEN
321*
322* A is non-unit triangular.
323*
324* Compute GROW = 1/G(j) and XBND = 1/M(j).
325* Initially, G(0) = max{x(i), i=1,...,n}.
326*
327 GROW = HALF / MAX( XBND, SMLNUM )
328 XBND = GROW
329 DO 40 J = JFIRST, JLAST, JINC
330*
331* Exit the loop if the growth factor is too small.
332*
333 IF( GROW.LE.SMLNUM )
334 $ GO TO 60
335*
336 TJJS = AB( MAIND, J )
337 TJJ = CABS1( TJJS )
338*
339 IF( TJJ.GE.SMLNUM ) THEN
340*
341* M(j) = G(j-1) / abs(A(j,j))
342*
343 XBND = MIN( XBND, MIN( ONE, TJJ )*GROW )
344 ELSE
345*
346* M(j) could overflow, set XBND to 0.
347*
348 XBND = ZERO
349 END IF
350*
351 IF( TJJ+CNORM( J ).GE.SMLNUM ) THEN
352*
353* G(j) = G(j-1)*( 1 + CNORM(j) / abs(A(j,j)) )
354*
355 GROW = GROW*( TJJ / ( TJJ+CNORM( J ) ) )
356 ELSE
357*
358* G(j) could overflow, set GROW to 0.
359*
360 GROW = ZERO
361 END IF
362 40 CONTINUE
363 GROW = XBND
364 ELSE
365*
366* A is unit triangular.
367*
368* Compute GROW = 1/G(j), where G(0) = max{x(i), i=1,...,n}.
369*
370 GROW = MIN( ONE, HALF / MAX( XBND, SMLNUM ) )
371 DO 50 J = JFIRST, JLAST, JINC
372*
373* Exit the loop if the growth factor is too small.
374*
375 IF( GROW.LE.SMLNUM )
376 $ GO TO 60
377*
378* G(j) = G(j-1)*( 1 + CNORM(j) )
379*
380 GROW = GROW*( ONE / ( ONE+CNORM( J ) ) )
381 50 CONTINUE
382 END IF
383 60 CONTINUE
384*
385 ELSE
386*
387* Compute the growth in A**T * x = b or A**H * x = b.
388*
389 IF( UPPER ) THEN
390 JFIRST = 1
391 JLAST = N
392 JINC = 1
393 MAIND = KD + 1
394 ELSE
395 JFIRST = N
396 JLAST = 1
397 JINC = -1
398 MAIND = 1
399 END IF
400*
401 IF( TSCAL.NE.ONE ) THEN
402 GROW = ZERO
403 GO TO 90
404 END IF
405*
406 IF( NOUNIT ) THEN
407*
408* A is non-unit triangular.
409*
410* Compute GROW = 1/G(j) and XBND = 1/M(j).
411* Initially, M(0) = max{x(i), i=1,...,n}.
412*
413 GROW = HALF / MAX( XBND, SMLNUM )
414 XBND = GROW
415 DO 70 J = JFIRST, JLAST, JINC
416*
417* Exit the loop if the growth factor is too small.
418*
419 IF( GROW.LE.SMLNUM )
420 $ GO TO 90
421*
422* G(j) = max( G(j-1), M(j-1)*( 1 + CNORM(j) ) )
423*
424 XJ = ONE + CNORM( J )
425 GROW = MIN( GROW, XBND / XJ )
426*
427 TJJS = AB( MAIND, J )
428 TJJ = CABS1( TJJS )
429*
430 IF( TJJ.GE.SMLNUM ) THEN
431*
432* M(j) = M(j-1)*( 1 + CNORM(j) ) / abs(A(j,j))
433*
434 IF( XJ.GT.TJJ )
435 $ XBND = XBND*( TJJ / XJ )
436 ELSE
437*
438* M(j) could overflow, set XBND to 0.
439*
440 XBND = ZERO
441 END IF
442 70 CONTINUE
443 GROW = MIN( GROW, XBND )
444 ELSE
445*
446* A is unit triangular.
447*
448* Compute GROW = 1/G(j), where G(0) = max{x(i), i=1,...,n}.
449*
450 GROW = MIN( ONE, HALF / MAX( XBND, SMLNUM ) )
451 DO 80 J = JFIRST, JLAST, JINC
452*
453* Exit the loop if the growth factor is too small.
454*
455 IF( GROW.LE.SMLNUM )
456 $ GO TO 90
457*
458* G(j) = ( 1 + CNORM(j) )*G(j-1)
459*
460 XJ = ONE + CNORM( J )
461 GROW = GROW / XJ
462 80 CONTINUE
463 END IF
464 90 CONTINUE
465 END IF
466*
467 IF( ( GROW*TSCAL ).GT.SMLNUM ) THEN
468*
469* Use the Level 2 BLAS solve if the reciprocal of the bound on
470* elements of X is not too small.
471*
472 CALL ZTBSV( UPLO, TRANS, DIAG, N, KD, AB, LDAB, X, 1 )
473 ELSE
474*
475* Use a Level 1 BLAS solve, scaling intermediate results.
476*
477 IF( XMAX.GT.BIGNUM*HALF ) THEN
478*
479* Scale X so that its components are less than or equal to
480* BIGNUM in absolute value.
481*
482 SCALE = ( BIGNUM*HALF ) / XMAX
483 CALL ZDSCAL( N, SCALE, X, 1 )
484 XMAX = BIGNUM
485 ELSE
486 XMAX = XMAX*TWO
487 END IF
488*
489 IF( NOTRAN ) THEN
490*
491* Solve A * x = b
492*
493 DO 120 J = JFIRST, JLAST, JINC
494*
495* Compute x(j) = b(j) / A(j,j), scaling x if necessary.
496*
497 XJ = CABS1( X( J ) )
498 IF( NOUNIT ) THEN
499 TJJS = AB( MAIND, J )*TSCAL
500 ELSE
501 TJJS = TSCAL
502 IF( TSCAL.EQ.ONE )
503 $ GO TO 110
504 END IF
505 TJJ = CABS1( TJJS )
506 IF( TJJ.GT.SMLNUM ) THEN
507*
508* abs(A(j,j)) > SMLNUM:
509*
510 IF( TJJ.LT.ONE ) THEN
511 IF( XJ.GT.TJJ*BIGNUM ) THEN
512*
513* Scale x by 1/b(j).
514*
515 REC = ONE / XJ
516 CALL ZDSCAL( N, REC, X, 1 )
517 SCALE = SCALE*REC
518 XMAX = XMAX*REC
519 END IF
520 END IF
521 X( J ) = ZLADIV( X( J ), TJJS )
522 XJ = CABS1( X( J ) )
523 ELSE IF( TJJ.GT.ZERO ) THEN
524*
525* 0 < abs(A(j,j)) <= SMLNUM:
526*
527 IF( XJ.GT.TJJ*BIGNUM ) THEN
528*
529* Scale x by (1/abs(x(j)))*abs(A(j,j))*BIGNUM
530* to avoid overflow when dividing by A(j,j).
531*
532 REC = ( TJJ*BIGNUM ) / XJ
533 IF( CNORM( J ).GT.ONE ) THEN
534*
535* Scale by 1/CNORM(j) to avoid overflow when
536* multiplying x(j) times column j.
537*
538 REC = REC / CNORM( J )
539 END IF
540 CALL ZDSCAL( N, REC, X, 1 )
541 SCALE = SCALE*REC
542 XMAX = XMAX*REC
543 END IF
544 X( J ) = ZLADIV( X( J ), TJJS )
545 XJ = CABS1( X( J ) )
546 ELSE
547*
548* A(j,j) = 0: Set x(1:n) = 0, x(j) = 1, and
549* scale = 0, and compute a solution to A*x = 0.
550*
551 DO 100 I = 1, N
552 X( I ) = ZERO
553 100 CONTINUE
554 X( J ) = ONE
555 XJ = ONE
556 SCALE = ZERO
557 XMAX = ZERO
558 END IF
559 110 CONTINUE
560*
561* Scale x if necessary to avoid overflow when adding a
562* multiple of column j of A.
563*
564 IF( XJ.GT.ONE ) THEN
565 REC = ONE / XJ
566 IF( CNORM( J ).GT.( BIGNUM-XMAX )*REC ) THEN
567*
568* Scale x by 1/(2*abs(x(j))).
569*
570 REC = REC*HALF
571 CALL ZDSCAL( N, REC, X, 1 )
572 SCALE = SCALE*REC
573 END IF
574 ELSE IF( XJ*CNORM( J ).GT.( BIGNUM-XMAX ) ) THEN
575*
576* Scale x by 1/2.
577*
578 CALL ZDSCAL( N, HALF, X, 1 )
579 SCALE = SCALE*HALF
580 END IF
581*
582 IF( UPPER ) THEN
583 IF( J.GT.1 ) THEN
584*
585* Compute the update
586* x(max(1,j-kd):j-1) := x(max(1,j-kd):j-1) -
587* x(j)* A(max(1,j-kd):j-1,j)
588*
589 JLEN = MIN( KD, J-1 )
590 CALL ZAXPY( JLEN, -X( J )*TSCAL,
591 $ AB( KD+1-JLEN, J ), 1, X( J-JLEN ), 1 )
592 I = IZAMAX( J-1, X, 1 )
593 XMAX = CABS1( X( I ) )
594 END IF
595 ELSE IF( J.LT.N ) THEN
596*
597* Compute the update
598* x(j+1:min(j+kd,n)) := x(j+1:min(j+kd,n)) -
599* x(j) * A(j+1:min(j+kd,n),j)
600*
601 JLEN = MIN( KD, N-J )
602 IF( JLEN.GT.0 )
603 $ CALL ZAXPY( JLEN, -X( J )*TSCAL, AB( 2, J ), 1,
604 $ X( J+1 ), 1 )
605 I = J + IZAMAX( N-J, X( J+1 ), 1 )
606 XMAX = CABS1( X( I ) )
607 END IF
608 120 CONTINUE
609*
610 ELSE IF( LSAME( TRANS, 'T' ) ) THEN
611*
612* Solve A**T * x = b
613*
614 DO 170 J = JFIRST, JLAST, JINC
615*
616* Compute x(j) = b(j) - sum A(k,j)*x(k).
617* k<>j
618*
619 XJ = CABS1( X( J ) )
620 USCAL = TSCAL
621 REC = ONE / MAX( XMAX, ONE )
622 IF( CNORM( J ).GT.( BIGNUM-XJ )*REC ) THEN
623*
624* If x(j) could overflow, scale x by 1/(2*XMAX).
625*
626 REC = REC*HALF
627 IF( NOUNIT ) THEN
628 TJJS = AB( MAIND, J )*TSCAL
629 ELSE
630 TJJS = TSCAL
631 END IF
632 TJJ = CABS1( TJJS )
633 IF( TJJ.GT.ONE ) THEN
634*
635* Divide by A(j,j) when scaling x if A(j,j) > 1.
636*
637 REC = MIN( ONE, REC*TJJ )
638 USCAL = ZLADIV( USCAL, TJJS )
639 END IF
640 IF( REC.LT.ONE ) THEN
641 CALL ZDSCAL( N, REC, X, 1 )
642 SCALE = SCALE*REC
643 XMAX = XMAX*REC
644 END IF
645 END IF
646*
647 CSUMJ = ZERO
648 IF( USCAL.EQ.DCMPLX( ONE ) ) THEN
649*
650* If the scaling needed for A in the dot product is 1,
651* call ZDOTU to perform the dot product.
652*
653 IF( UPPER ) THEN
654 JLEN = MIN( KD, J-1 )
655 CSUMJ = ZDOTU( JLEN, AB( KD+1-JLEN, J ), 1,
656 $ X( J-JLEN ), 1 )
657 ELSE
658 JLEN = MIN( KD, N-J )
659 IF( JLEN.GT.1 )
660 $ CSUMJ = ZDOTU( JLEN, AB( 2, J ), 1, X( J+1 ),
661 $ 1 )
662 END IF
663 ELSE
664*
665* Otherwise, use in-line code for the dot product.
666*
667 IF( UPPER ) THEN
668 JLEN = MIN( KD, J-1 )
669 DO 130 I = 1, JLEN
670 CSUMJ = CSUMJ + ( AB( KD+I-JLEN, J )*USCAL )*
671 $ X( J-JLEN-1+I )
672 130 CONTINUE
673 ELSE
674 JLEN = MIN( KD, N-J )
675 DO 140 I = 1, JLEN
676 CSUMJ = CSUMJ + ( AB( I+1, J )*USCAL )*X( J+I )
677 140 CONTINUE
678 END IF
679 END IF
680*
681 IF( USCAL.EQ.DCMPLX( TSCAL ) ) THEN
682*
683* Compute x(j) := ( x(j) - CSUMJ ) / A(j,j) if 1/A(j,j)
684* was not used to scale the dotproduct.
685*
686 X( J ) = X( J ) - CSUMJ
687 XJ = CABS1( X( J ) )
688 IF( NOUNIT ) THEN
689*
690* Compute x(j) = x(j) / A(j,j), scaling if necessary.
691*
692 TJJS = AB( MAIND, J )*TSCAL
693 ELSE
694 TJJS = TSCAL
695 IF( TSCAL.EQ.ONE )
696 $ GO TO 160
697 END IF
698 TJJ = CABS1( TJJS )
699 IF( TJJ.GT.SMLNUM ) THEN
700*
701* abs(A(j,j)) > SMLNUM:
702*
703 IF( TJJ.LT.ONE ) THEN
704 IF( XJ.GT.TJJ*BIGNUM ) THEN
705*
706* Scale X by 1/abs(x(j)).
707*
708 REC = ONE / XJ
709 CALL ZDSCAL( N, REC, X, 1 )
710 SCALE = SCALE*REC
711 XMAX = XMAX*REC
712 END IF
713 END IF
714 X( J ) = ZLADIV( X( J ), TJJS )
715 ELSE IF( TJJ.GT.ZERO ) THEN
716*
717* 0 < abs(A(j,j)) <= SMLNUM:
718*
719 IF( XJ.GT.TJJ*BIGNUM ) THEN
720*
721* Scale x by (1/abs(x(j)))*abs(A(j,j))*BIGNUM.
722*
723 REC = ( TJJ*BIGNUM ) / XJ
724 CALL ZDSCAL( N, REC, X, 1 )
725 SCALE = SCALE*REC
726 XMAX = XMAX*REC
727 END IF
728 X( J ) = ZLADIV( X( J ), TJJS )
729 ELSE
730*
731* A(j,j) = 0: Set x(1:n) = 0, x(j) = 1, and
732* scale = 0 and compute a solution to A**T *x = 0.
733*
734 DO 150 I = 1, N
735 X( I ) = ZERO
736 150 CONTINUE
737 X( J ) = ONE
738 SCALE = ZERO
739 XMAX = ZERO
740 END IF
741 160 CONTINUE
742 ELSE
743*
744* Compute x(j) := x(j) / A(j,j) - CSUMJ if the dot
745* product has already been divided by 1/A(j,j).
746*
747 X( J ) = ZLADIV( X( J ), TJJS ) - CSUMJ
748 END IF
749 XMAX = MAX( XMAX, CABS1( X( J ) ) )
750 170 CONTINUE
751*
752 ELSE
753*
754* Solve A**H * x = b
755*
756 DO 220 J = JFIRST, JLAST, JINC
757*
758* Compute x(j) = b(j) - sum A(k,j)*x(k).
759* k<>j
760*
761 XJ = CABS1( X( J ) )
762 USCAL = TSCAL
763 REC = ONE / MAX( XMAX, ONE )
764 IF( CNORM( J ).GT.( BIGNUM-XJ )*REC ) THEN
765*
766* If x(j) could overflow, scale x by 1/(2*XMAX).
767*
768 REC = REC*HALF
769 IF( NOUNIT ) THEN
770 TJJS = DCONJG( AB( MAIND, J ) )*TSCAL
771 ELSE
772 TJJS = TSCAL
773 END IF
774 TJJ = CABS1( TJJS )
775 IF( TJJ.GT.ONE ) THEN
776*
777* Divide by A(j,j) when scaling x if A(j,j) > 1.
778*
779 REC = MIN( ONE, REC*TJJ )
780 USCAL = ZLADIV( USCAL, TJJS )
781 END IF
782 IF( REC.LT.ONE ) THEN
783 CALL ZDSCAL( N, REC, X, 1 )
784 SCALE = SCALE*REC
785 XMAX = XMAX*REC
786 END IF
787 END IF
788*
789 CSUMJ = ZERO
790 IF( USCAL.EQ.DCMPLX( ONE ) ) THEN
791*
792* If the scaling needed for A in the dot product is 1,
793* call ZDOTC to perform the dot product.
794*
795 IF( UPPER ) THEN
796 JLEN = MIN( KD, J-1 )
797 CSUMJ = ZDOTC( JLEN, AB( KD+1-JLEN, J ), 1,
798 $ X( J-JLEN ), 1 )
799 ELSE
800 JLEN = MIN( KD, N-J )
801 IF( JLEN.GT.1 )
802 $ CSUMJ = ZDOTC( JLEN, AB( 2, J ), 1, X( J+1 ),
803 $ 1 )
804 END IF
805 ELSE
806*
807* Otherwise, use in-line code for the dot product.
808*
809 IF( UPPER ) THEN
810 JLEN = MIN( KD, J-1 )
811 DO 180 I = 1, JLEN
812 CSUMJ = CSUMJ + ( DCONJG( AB( KD+I-JLEN, J ) )*
813 $ USCAL )*X( J-JLEN-1+I )
814 180 CONTINUE
815 ELSE
816 JLEN = MIN( KD, N-J )
817 DO 190 I = 1, JLEN
818 CSUMJ = CSUMJ + ( DCONJG( AB( I+1, J ) )*USCAL )
819 $ *X( J+I )
820 190 CONTINUE
821 END IF
822 END IF
823*
824 IF( USCAL.EQ.DCMPLX( TSCAL ) ) THEN
825*
826* Compute x(j) := ( x(j) - CSUMJ ) / A(j,j) if 1/A(j,j)
827* was not used to scale the dotproduct.
828*
829 X( J ) = X( J ) - CSUMJ
830 XJ = CABS1( X( J ) )
831 IF( NOUNIT ) THEN
832*
833* Compute x(j) = x(j) / A(j,j), scaling if necessary.
834*
835 TJJS = DCONJG( AB( MAIND, J ) )*TSCAL
836 ELSE
837 TJJS = TSCAL
838 IF( TSCAL.EQ.ONE )
839 $ GO TO 210
840 END IF
841 TJJ = CABS1( TJJS )
842 IF( TJJ.GT.SMLNUM ) THEN
843*
844* abs(A(j,j)) > SMLNUM:
845*
846 IF( TJJ.LT.ONE ) THEN
847 IF( XJ.GT.TJJ*BIGNUM ) THEN
848*
849* Scale X by 1/abs(x(j)).
850*
851 REC = ONE / XJ
852 CALL ZDSCAL( N, REC, X, 1 )
853 SCALE = SCALE*REC
854 XMAX = XMAX*REC
855 END IF
856 END IF
857 X( J ) = ZLADIV( X( J ), TJJS )
858 ELSE IF( TJJ.GT.ZERO ) THEN
859*
860* 0 < abs(A(j,j)) <= SMLNUM:
861*
862 IF( XJ.GT.TJJ*BIGNUM ) THEN
863*
864* Scale x by (1/abs(x(j)))*abs(A(j,j))*BIGNUM.
865*
866 REC = ( TJJ*BIGNUM ) / XJ
867 CALL ZDSCAL( N, REC, X, 1 )
868 SCALE = SCALE*REC
869 XMAX = XMAX*REC
870 END IF
871 X( J ) = ZLADIV( X( J ), TJJS )
872 ELSE
873*
874* A(j,j) = 0: Set x(1:n) = 0, x(j) = 1, and
875* scale = 0 and compute a solution to A**H *x = 0.
876*
877 DO 200 I = 1, N
878 X( I ) = ZERO
879 200 CONTINUE
880 X( J ) = ONE
881 SCALE = ZERO
882 XMAX = ZERO
883 END IF
884 210 CONTINUE
885 ELSE
886*
887* Compute x(j) := x(j) / A(j,j) - CSUMJ if the dot
888* product has already been divided by 1/A(j,j).
889*
890 X( J ) = ZLADIV( X( J ), TJJS ) - CSUMJ
891 END IF
892 XMAX = MAX( XMAX, CABS1( X( J ) ) )
893 220 CONTINUE
894 END IF
895 SCALE = SCALE / TSCAL
896 END IF
897*
898* Scale the column norms by 1/TSCAL for return.
899*
900 IF( TSCAL.NE.ONE ) THEN
901 CALL DSCAL( N, ONE / TSCAL, CNORM, 1 )
902 END IF
903*
904 RETURN
905*
906* End of ZLATBS
907*
908 END
Note: See TracBrowser for help on using the repository browser.