source: issm/trunk-jpl/externalpackages/petsc-dev/src/externalpackages/fblaslapack-3.1.1/lapack/dlaqps.f@ 11896

Last change on this file since 11896 was 11896, checked in by habbalf, 13 years ago

petsc-dev : Petsc development code in external packages. Mercurial updates

File size: 8.0 KB
Line 
1 SUBROUTINE DLAQPS( M, N, OFFSET, NB, KB, A, LDA, JPVT, TAU, VN1,
2 $ VN2, AUXV, F, LDF )
3*
4* -- LAPACK auxiliary routine (version 3.1) --
5* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
6* November 2006
7*
8* .. Scalar Arguments ..
9 INTEGER KB, LDA, LDF, M, N, NB, OFFSET
10* ..
11* .. Array Arguments ..
12 INTEGER JPVT( * )
13 DOUBLE PRECISION A( LDA, * ), AUXV( * ), F( LDF, * ), TAU( * ),
14 $ VN1( * ), VN2( * )
15* ..
16*
17* Purpose
18* =======
19*
20* DLAQPS computes a step of QR factorization with column pivoting
21* of a real M-by-N matrix A by using Blas-3. It tries to factorize
22* NB columns from A starting from the row OFFSET+1, and updates all
23* of the matrix with Blas-3 xGEMM.
24*
25* In some cases, due to catastrophic cancellations, it cannot
26* factorize NB columns. Hence, the actual number of factorized
27* columns is returned in KB.
28*
29* Block A(1:OFFSET,1:N) is accordingly pivoted, but not factorized.
30*
31* Arguments
32* =========
33*
34* M (input) INTEGER
35* The number of rows of the matrix A. M >= 0.
36*
37* N (input) INTEGER
38* The number of columns of the matrix A. N >= 0
39*
40* OFFSET (input) INTEGER
41* The number of rows of A that have been factorized in
42* previous steps.
43*
44* NB (input) INTEGER
45* The number of columns to factorize.
46*
47* KB (output) INTEGER
48* The number of columns actually factorized.
49*
50* A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
51* On entry, the M-by-N matrix A.
52* On exit, block A(OFFSET+1:M,1:KB) is the triangular
53* factor obtained and block A(1:OFFSET,1:N) has been
54* accordingly pivoted, but no factorized.
55* The rest of the matrix, block A(OFFSET+1:M,KB+1:N) has
56* been updated.
57*
58* LDA (input) INTEGER
59* The leading dimension of the array A. LDA >= max(1,M).
60*
61* JPVT (input/output) INTEGER array, dimension (N)
62* JPVT(I) = K <==> Column K of the full matrix A has been
63* permuted into position I in AP.
64*
65* TAU (output) DOUBLE PRECISION array, dimension (KB)
66* The scalar factors of the elementary reflectors.
67*
68* VN1 (input/output) DOUBLE PRECISION array, dimension (N)
69* The vector with the partial column norms.
70*
71* VN2 (input/output) DOUBLE PRECISION array, dimension (N)
72* The vector with the exact column norms.
73*
74* AUXV (input/output) DOUBLE PRECISION array, dimension (NB)
75* Auxiliar vector.
76*
77* F (input/output) DOUBLE PRECISION array, dimension (LDF,NB)
78* Matrix F' = L*Y'*A.
79*
80* LDF (input) INTEGER
81* The leading dimension of the array F. LDF >= max(1,N).
82*
83* Further Details
84* ===============
85*
86* Based on contributions by
87* G. Quintana-Orti, Depto. de Informatica, Universidad Jaime I, Spain
88* X. Sun, Computer Science Dept., Duke University, USA
89*
90* Partial column norm updating strategy modified by
91* Z. Drmac and Z. Bujanovic, Dept. of Mathematics,
92* University of Zagreb, Croatia.
93* June 2006.
94* For more details see LAPACK Working Note 176.
95* =====================================================================
96*
97* .. Parameters ..
98 DOUBLE PRECISION ZERO, ONE
99 PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
100* ..
101* .. Local Scalars ..
102 INTEGER ITEMP, J, K, LASTRK, LSTICC, PVT, RK
103 DOUBLE PRECISION AKK, TEMP, TEMP2, TOL3Z
104* ..
105* .. External Subroutines ..
106 EXTERNAL DGEMM, DGEMV, DLARFG, DSWAP
107* ..
108* .. Intrinsic Functions ..
109 INTRINSIC ABS, DBLE, MAX, MIN, NINT, SQRT
110* ..
111* .. External Functions ..
112 INTEGER IDAMAX
113 DOUBLE PRECISION DLAMCH, DNRM2
114 EXTERNAL IDAMAX, DLAMCH, DNRM2
115* ..
116* .. Executable Statements ..
117*
118 LASTRK = MIN( M, N+OFFSET )
119 LSTICC = 0
120 K = 0
121 TOL3Z = SQRT(DLAMCH('Epsilon'))
122*
123* Beginning of while loop.
124*
125 10 CONTINUE
126 IF( ( K.LT.NB ) .AND. ( LSTICC.EQ.0 ) ) THEN
127 K = K + 1
128 RK = OFFSET + K
129*
130* Determine ith pivot column and swap if necessary
131*
132 PVT = ( K-1 ) + IDAMAX( N-K+1, VN1( K ), 1 )
133 IF( PVT.NE.K ) THEN
134 CALL DSWAP( M, A( 1, PVT ), 1, A( 1, K ), 1 )
135 CALL DSWAP( K-1, F( PVT, 1 ), LDF, F( K, 1 ), LDF )
136 ITEMP = JPVT( PVT )
137 JPVT( PVT ) = JPVT( K )
138 JPVT( K ) = ITEMP
139 VN1( PVT ) = VN1( K )
140 VN2( PVT ) = VN2( K )
141 END IF
142*
143* Apply previous Householder reflectors to column K:
144* A(RK:M,K) := A(RK:M,K) - A(RK:M,1:K-1)*F(K,1:K-1)'.
145*
146 IF( K.GT.1 ) THEN
147 CALL DGEMV( 'No transpose', M-RK+1, K-1, -ONE, A( RK, 1 ),
148 $ LDA, F( K, 1 ), LDF, ONE, A( RK, K ), 1 )
149 END IF
150*
151* Generate elementary reflector H(k).
152*
153 IF( RK.LT.M ) THEN
154 CALL DLARFG( M-RK+1, A( RK, K ), A( RK+1, K ), 1, TAU( K ) )
155 ELSE
156 CALL DLARFG( 1, A( RK, K ), A( RK, K ), 1, TAU( K ) )
157 END IF
158*
159 AKK = A( RK, K )
160 A( RK, K ) = ONE
161*
162* Compute Kth column of F:
163*
164* Compute F(K+1:N,K) := tau(K)*A(RK:M,K+1:N)'*A(RK:M,K).
165*
166 IF( K.LT.N ) THEN
167 CALL DGEMV( 'Transpose', M-RK+1, N-K, TAU( K ),
168 $ A( RK, K+1 ), LDA, A( RK, K ), 1, ZERO,
169 $ F( K+1, K ), 1 )
170 END IF
171*
172* Padding F(1:K,K) with zeros.
173*
174 DO 20 J = 1, K
175 F( J, K ) = ZERO
176 20 CONTINUE
177*
178* Incremental updating of F:
179* F(1:N,K) := F(1:N,K) - tau(K)*F(1:N,1:K-1)*A(RK:M,1:K-1)'
180* *A(RK:M,K).
181*
182 IF( K.GT.1 ) THEN
183 CALL DGEMV( 'Transpose', M-RK+1, K-1, -TAU( K ), A( RK, 1 ),
184 $ LDA, A( RK, K ), 1, ZERO, AUXV( 1 ), 1 )
185*
186 CALL DGEMV( 'No transpose', N, K-1, ONE, F( 1, 1 ), LDF,
187 $ AUXV( 1 ), 1, ONE, F( 1, K ), 1 )
188 END IF
189*
190* Update the current row of A:
191* A(RK,K+1:N) := A(RK,K+1:N) - A(RK,1:K)*F(K+1:N,1:K)'.
192*
193 IF( K.LT.N ) THEN
194 CALL DGEMV( 'No transpose', N-K, K, -ONE, F( K+1, 1 ), LDF,
195 $ A( RK, 1 ), LDA, ONE, A( RK, K+1 ), LDA )
196 END IF
197*
198* Update partial column norms.
199*
200 IF( RK.LT.LASTRK ) THEN
201 DO 30 J = K + 1, N
202 IF( VN1( J ).NE.ZERO ) THEN
203*
204* NOTE: The following 4 lines follow from the analysis in
205* Lapack Working Note 176.
206*
207 TEMP = ABS( A( RK, J ) ) / VN1( J )
208 TEMP = MAX( ZERO, ( ONE+TEMP )*( ONE-TEMP ) )
209 TEMP2 = TEMP*( VN1( J ) / VN2( J ) )**2
210 IF( TEMP2 .LE. TOL3Z ) THEN
211 VN2( J ) = DBLE( LSTICC )
212 LSTICC = J
213 ELSE
214 VN1( J ) = VN1( J )*SQRT( TEMP )
215 END IF
216 END IF
217 30 CONTINUE
218 END IF
219*
220 A( RK, K ) = AKK
221*
222* End of while loop.
223*
224 GO TO 10
225 END IF
226 KB = K
227 RK = OFFSET + KB
228*
229* Apply the block reflector to the rest of the matrix:
230* A(OFFSET+KB+1:M,KB+1:N) := A(OFFSET+KB+1:M,KB+1:N) -
231* A(OFFSET+KB+1:M,1:KB)*F(KB+1:N,1:KB)'.
232*
233 IF( KB.LT.MIN( N, M-OFFSET ) ) THEN
234 CALL DGEMM( 'No transpose', 'Transpose', M-RK, N-KB, KB, -ONE,
235 $ A( RK+1, 1 ), LDA, F( KB+1, 1 ), LDF, ONE,
236 $ A( RK+1, KB+1 ), LDA )
237 END IF
238*
239* Recomputation of difficult columns.
240*
241 40 CONTINUE
242 IF( LSTICC.GT.0 ) THEN
243 ITEMP = NINT( VN2( LSTICC ) )
244 VN1( LSTICC ) = DNRM2( M-RK, A( RK+1, LSTICC ), 1 )
245*
246* NOTE: The computation of VN1( LSTICC ) relies on the fact that
247* SNRM2 does not fail on vectors with norm below the value of
248* SQRT(DLAMCH('S'))
249*
250 VN2( LSTICC ) = VN1( LSTICC )
251 LSTICC = ITEMP
252 GO TO 40
253 END IF
254*
255 RETURN
256*
257* End of DLAQPS
258*
259 END
Note: See TracBrowser for help on using the repository browser.