1 | % [SVD1,SVD2,PC1,PC2,EXPVAR,Lambda] = CALSVD2(A,B,N) Compute SVDs
|
---|
2 | %
|
---|
3 | % Ref: H. Bjornson and S.A. Venegas: "A manual for EOF and SVD -
|
---|
4 | % Analyses of climatic Data" 1997
|
---|
5 | %================================================================
|
---|
6 | %
|
---|
7 | % Guillaume MAZE - LPO/LMD - March 2004
|
---|
8 | % gmaze@univ-brest.fr
|
---|
9 |
|
---|
10 |
|
---|
11 | function [e1,e2,pc1,pc2,expvar,Lambda,dsumCF] = calsvd2(A,B,N);
|
---|
12 |
|
---|
13 |
|
---|
14 | %================================================================
|
---|
15 | % Ref: H. Bjornson and S.A. Venegas: "A manual for EOF and SVD -
|
---|
16 | % Analyses of climatic Data" 1997 => p18
|
---|
17 |
|
---|
18 | % Assume that A is (time*map) matrix
|
---|
19 | [n p]=size(A);
|
---|
20 |
|
---|
21 | % Remove the mean of each column (ie the time mean in each station records)
|
---|
22 | S=detrend(A,'constant');
|
---|
23 | P=detrend(B,'constant');
|
---|
24 |
|
---|
25 | % Form the covariance matrix:
|
---|
26 | C=S'*P;
|
---|
27 |
|
---|
28 | % Find eigenvectors and singular values
|
---|
29 | [U,Lambda,V] = svds(C,N);
|
---|
30 |
|
---|
31 | % PC
|
---|
32 | a=S*U;
|
---|
33 | b=P*V;
|
---|
34 |
|
---|
35 | % Make them clear for output
|
---|
36 | for iN=1:N
|
---|
37 | e1(iN,:) = squeeze( U(:,iN) )';
|
---|
38 | pc1(iN,:) = squeeze( a(:,iN) )';
|
---|
39 | e2(iN,:) = squeeze( V(:,iN) )';
|
---|
40 | pc2(iN,:) = squeeze( b(:,iN) )';
|
---|
41 | end
|
---|
42 |
|
---|
43 | % Amount of variance explained a 0.1 pres et en %
|
---|
44 | L2=Lambda.^2;
|
---|
45 | dsum=diag(L2)/trace(L2);
|
---|
46 | for iN=1:N
|
---|
47 | expvar(iN)=fix( ( dsum(iN)*100/sum(dsum) )*10 ) /10;
|
---|
48 | end
|
---|
49 |
|
---|