[22793] | 1 | % compute semi-analytic solutions for a disc load
|
---|
| 2 | function [vert, horz] = wahr(disc_rad,xi,love_h,love_l);
|
---|
| 3 |
|
---|
| 4 | disc_rad = disc_rad/1000; % km
|
---|
| 5 | % compute P(x), dP(x)/dx, d2P(x)/dx2
|
---|
| 6 | %---------------------------------------------------------------------
|
---|
| 7 | % compute p_value
|
---|
| 8 | theta=km2deg(xi/1000)';
|
---|
| 9 | ang = theta/180*pi;
|
---|
| 10 | alpha=cos(ang);
|
---|
| 11 | m=length(alpha);
|
---|
| 12 | n=length(love_h)-1;
|
---|
| 13 | p_value = p_polynomial_value(m,n,alpha);
|
---|
| 14 | p_prime = p_polynomial_prime(m,n,alpha);
|
---|
| 15 | %---------------------------------------------------------------------
|
---|
| 16 | nn=[0:n];
|
---|
| 17 | nn_plus_1=nn+1;
|
---|
| 18 |
|
---|
| 19 | % disc radius in degree
|
---|
| 20 | disc_rad = km2deg(disc_rad)/180*pi;
|
---|
| 21 | tau=zeros(size(love_h));
|
---|
| 22 | tau(1) = 0.5*(1-cos(disc_rad)); % tau_0
|
---|
| 23 | p_value_disc = p_polynomial_value(1,n+1,cos(disc_rad));
|
---|
| 24 | p_prime_disc = p_polynomial_prime(1,n,cos(disc_rad));
|
---|
| 25 | for jj=2:n+1
|
---|
| 26 | nnn = jj-1;
|
---|
| 27 | tau(jj) = 0.5 * (p_value_disc(jj-1) - p_value_disc(jj+1));
|
---|
| 28 | end
|
---|
| 29 |
|
---|
| 30 | const=zeros(size(love_h));
|
---|
| 31 | for jj=1:n+1
|
---|
| 32 | const(jj) = 1/(2*(jj-1)+1);
|
---|
| 33 | end
|
---|
| 34 |
|
---|
| 35 | disc=sum(bsxfun(@times,p_value,tau'),2);
|
---|
| 36 |
|
---|
| 37 | g1 = -sum(bsxfun(@times,p_value,(tau.*love_h.*const)'),2);
|
---|
| 38 | g5 = -sum(bsxfun(@times,-sin(ang),bsxfun(@times,p_prime,(tau.*love_l.*const)')),2);
|
---|
| 39 |
|
---|
| 40 | % coeff
|
---|
| 41 | coeff = 1000*4*pi*(6.67408*10^-11)*(6.3781*10^6)/9.81;
|
---|
| 42 |
|
---|
| 43 | % vertical and horizontal solutions in mm
|
---|
| 44 | vert = g1*coeff*1000; % mm
|
---|
| 45 | horz = g5*coeff*1000; % mm
|
---|
| 46 |
|
---|