Index: ../trunk-jpl/src/m/classes/stochasticforcing.py =================================================================== --- ../trunk-jpl/src/m/classes/stochasticforcing.py (revision 26673) +++ ../trunk-jpl/src/m/classes/stochasticforcing.py (revision 26674) @@ -134,7 +134,7 @@ dimensions[ind] = md.frontalforcings.num_basins # Scaling covariance matrix (scale column-by-column and row-by-row) - scaledfields = ['DefaultCalving', 'SMBautoregression'] # list of fields that need scaling * 1/yts + scaledfields = ['DefaultCalving','FloatingMeltRate','SMBautoregression'] # list of fields that need scaling * 1/yts tempcovariance = np.copy(self.covariance) for i in range(num_fields): if self.fields[i] in scaledfields: Index: ../trunk-jpl/test/NightlyRun/test543.py =================================================================== --- ../trunk-jpl/test/NightlyRun/test543.py (revision 26673) +++ ../trunk-jpl/test/NightlyRun/test543.py (revision 26674) @@ -75,8 +75,8 @@ #Hard-coding covariance matrix because python is complaining covglob = np.array([[1e-4,0.,0.,0.,0.,0.],[0.,1e-4,0.,0.,0.,0.],[0.,0.,1e-2,0.,0.,0.],[0.,0.,0.,1e-1,0.,0.],[0.,0.,0.,0.,0.05,0.],[0.,0.,0.,0.,0.,0.05]]) -testchol = np.linalg.cholesky(covglob) -print(testchol) +#testchol = np.linalg.cholesky(covglob) +#print(testchol) # Stochastic forcing md.stochasticforcing.isstochasticforcing = 1