Index: ../trunk-jpl/src/m/classes/snowpack.m =================================================================== --- ../trunk-jpl/src/m/classes/snowpack.m (revision 15930) +++ ../trunk-jpl/src/m/classes/snowpack.m (revision 15931) @@ -68,6 +68,10 @@ interpolations1d_vw_args = ''; %}}} %filters {{{ + filters={'TA::filter1',{'soft',[-20 10]}}; + filters=NaN; + filter_values=NaN; + filters_ta_filter1 = ''; filters_ta_arg1 = NaN; filters_rh_filter1 = ''; @@ -274,6 +278,8 @@ %}}} %filters {{{ filter_values={'MIN_MAX','RATE_FILTER1','RATE_FILTER2','UNHEATED_RAIN_GAUGE_FILTER','WMO_UNDERCATCH_FILTER','WMO_UNDERCATCH_FILTER-SIMPLIFIED','UNVENTILLATED_TEMPERATURE_SENSOR','ADD_AN_OFFSET'}; + + md=checkfield(md,'snowpack.filters_ta_filter1','values',{filter_values}); if strcmpi(md.snowpack.filters_ta_filter1,'MIN_MAX'), md=checkfield(md,'snowpack.filters_ta_filter1','size',[1 NaN]); end md=checkfield(md,'snowpack.filters_ta_arg1','values',{filter_values}); @@ -335,64 +341,83 @@ disp(sprintf(' Snowpack solution parameters:')); disp(sprintf('\n %s','Snowpack parameters:')); % {{{ - fielddisplay(obj,'snowpack_meas_tss',' '); - fielddisplay(obj,'snowpack_enforce_measured_snow_heights',' '); - fielddisplay(obj,'snowpack_sw_mode',' '); - fielddisplay(obj,'snowpack_incoming_longwave',' '); - fielddisplay(obj,'snowpack_height_of_wind_value',' '); - fielddisplay(obj,'snowpack_height_of_meteo_values',' '); - fielddisplay(obj,'snowpack_neutral',' '); - fielddisplay(obj,'snowpack_roughness_length',' '); - fielddisplay(obj,'snowpack_number_slopes',' '); - fielddisplay(obj,'snowpack_snow_redistribution',' '); - fielddisplay(obj,'snowpack_calculation_step_length',' '); - fielddisplay(obj,'snowpack_change_bc',' '); - fielddisplay(obj,'snowpack_thresh_change_bc',' '); - fielddisplay(obj,'snowpack_snp_soil',' '); - fielddisplay(obj,'snowpack_soil_flux',' '); - fielddisplay(obj,'snowpack_geo_heat',' '); - fielddisplay(obj,'snowpack_canopy',' '); + fielddisplay(obj,'snowpack_meas_tss',{'A measured surface temperature is available and can be reliably ','used for various consistency tests (it needs to be set to true if enabling CHANGE_BC) (0 or 1)'}); + fielddisplay(obj,'snowpack_enforce_measured_snow_heights','Input mode by which a measurement of snow depth is used to drive the snow cover mass balance (0 or 1)'); + fielddisplay(obj,'snowpack_sw_mode',{'Define the shortwave radiation input:',... + '0 Incoming shortwave radiation is measured and albedo estimated by the model',... + '1 Reflected shortwave radiation is available as input and albedo is estimated by the model (IMIS standard)',... + '2 Incoming and reflected shortwave radiation are both measured and the albedo is estimated from both measurements subject to plausibility checks.'}); + fielddisplay(obj,'snowpack_incoming_longwave','Use the provided incoming long wave on the virtual slopes? (0 or 1)'); + fielddisplay(obj,'snowpack_height_of_wind_value',{'The instrument height (or model layer height) for wind input data; note that height ',... + 'is above ground for a standard SNOWPACK application but above surface (snow or ground) for Alpine3D applications '}); + fielddisplay(obj,'snowpack_height_of_meteo_values',{'The instrument height (or model layer height) for meteorological input data except for wind,',... + 'which may be at a different height; note that height is above ground for a standard SNOWPACK ',... + 'application but above surface (snow or ground) for Alpine3D applications. '}); + fielddisplay(obj,'snowpack_neutral',{'Select the atmospheric stability correction model:',... + '-1 use a simplified Richardson number stability correction',... + '0 assume standard Monin-Obukhov bulk formulation for surface exchange iteration with Paulson, Stearns and Weidner (can be used with BC_CHANGE=0)',... + '1 force Monin-Obukhov formulation to assume neutral conditions regardless of the actual stratification; it has been shown to work well in ',... + 'complex terrain settings. It should be used with BC_CHANGE=1, i.e., Dirichlet /* but also is recommended with Neumann b.c., i.e., BC_CHANGE=0.'}); + fielddisplay(obj,'snowpack_roughness_length',{'Aerodynamic roughness length as a parameter for the Monin-Obukhov bulk formulation;',... + 'A typical value for complex terrain is 0.01 m and for snow covered flat sites 0.001 m. '}); + fielddisplay(obj,'snowpack_number_slopes',{'Based on meteorological input from a (flat field) automatic station or numerical weather model,',... + 'up to 8 expositions can be calculated in addition to the flat field if the corresponding *.sno files are provided. For example,',... + 'if you provide a flat field *.snow file (mandatory), which is named KLO3.sno and you want 4 slopes to be calculated the corresponding',... + 'slope files should be named KLO21.sno, ...,KLO24.sno '}); + fielddisplay(obj,'snowpack_snow_redistribution',{'Specifies if redistribution of snow is allowed from (upwind) expositions to lee slopes.',... + 'In case just the flat field is calculated, snow erosion is enabled but only for "ENFORCE_MEASURED_SNOW_HEIGHTS".'}); + fielddisplay(obj,'snowpack_calculation_step_length',{'Internal time step (in minutes) used for model simulation. Please note that this MUST ',... + 'be the same as HNW::accumulate (the latter being in seconds) if re-acumulating precipitation, otherwise it would lead to wrong results.'}); + fielddisplay(obj,'snowpack_change_bc',{'Use measured surface temperature as Dirichlet temperature BC for sub-freezing snowpacks and switch to ',... + 'Neumann only for melting snowpacks. If set to false, assumes Neumann boundary conditions.'}); + fielddisplay(obj,'snowpack_thresh_change_bc','Threshold value (small number below freezing), which switches from Dirichlet to Neumann BCs if CHANGE_BC is selected'); + fielddisplay(obj,'snowpack_snp_soil','Soil layers as defined by the *.sno files are included in the simulation'); + fielddisplay(obj,'snowpack_soil_flux','Assume that the lower temperature boundary condition is given by GEO_HEAT (Neumann) and not by a measured temperature'); + fielddisplay(obj,'snowpack_geo_heat','Constant geothermal heat flux at great) depth W m-2): Lower flux boundary condition for temperature equation if BC is Neumann'); + fielddisplay(obj,'snowpack_canopy','Switch to tell the model that canopy is present (note that Canopy parameters should then be provided in the *.sno file)'); % }}} disp(sprintf('\n %s','Snowpackadvanced parameters:')); % {{{ - fielddisplay(obj,'snowpackadvanced_variant',''); % use 320 kg m-3 for fixed density - fielddisplay(obj,'snowpackadvanced_hn_density',''); + fielddisplay(obj,'snowpackadvanced_variant','variant selection (includes a choice of specific models, DEFAULT, ANTARCTICA and JAPAN )'); % use 320 kg m-3 for fixed density + fielddisplay(obj,'snowpackadvanced_hn_density',{'Fixed value to be used as new snow density if a constant density model is chosen, otherwise the choices are "PARAMETERIZED" "EVENT" "MEASURED"'}); % }}} disp(sprintf('\n %s','General parameters:')); % {{{ fielddisplay(obj,'general_pluginpath',''); - fielddisplay(obj,'general_buff_chunk_size',' '); - fielddisplay(obj,'general_buff_before',' '); + fielddisplay(obj,'general_buff_chunk_size','Size in days of a chunk of data to read at once.'); + fielddisplay(obj,'general_buff_before','Alternate way of buffer centering: When rebuffering, the new date will be located BUFF_BEFORE days from the beginning of the buffer (therefore, it takes a value in days). '); % }}} disp(sprintf('\n %s','Input parameter:')); % {{{ - fielddisplay(obj,'input_coordsys',''); + fielddisplay(obj,'input_coordsys','coordinates in the Swiss Grid (http://geomatics.ladetto.ch/ch1903_wgs84_de.pdf). One of CH1903,UTM,UPS,PROJ4 or LOCAL'); fielddisplay(obj,'input_coordparam',' '); fielddisplay(obj,'input_time_zone',' '); - fielddisplay(obj,'input_meteo',' '); - fielddisplay(obj,'input_meteopath',' '); - fielddisplay(obj,'input_station1',' '); - fielddisplay(obj,'input_snowfile1',' '); + fielddisplay(obj,'input_meteo','plugin for METEO data (one of BORMA,COSMO,GEOTOP,GRIB,GS,IMIS,SMET,SNOWPACK'); + fielddisplay(obj,'input_meteopath','string containing the path to the xml files.'); + fielddisplay(obj,'input_station1','Meteorology file for station number #'); + fielddisplay(obj,'input_snowfile1','File name for the initial snow profile for station number #'); % }}} disp(sprintf('\n %s','Output parameters:')); % {{{ - fielddisplay(obj,'output_coordsys',' '); - fielddisplay(obj,'output_coordparam',' '); - fielddisplay(obj,'output_time_zone',' '); - fielddisplay(obj,'output_meteopath',' '); - fielddisplay(obj,'output_experiment',' '); - fielddisplay(obj,'output_ts_write',' '); - fielddisplay(obj,'output_ts_start',' '); - fielddisplay(obj,'output_ts_days_between',' '); - fielddisplay(obj,'output_profile',' '); - fielddisplay(obj,'output_prof_write',' '); - fielddisplay(obj,'output_prof_start',' '); - fielddisplay(obj,'output_prof_days_between',' '); + fielddisplay(obj,'output_coordsys','Coordinates in the Swiss Grid http://geomatics.ladetto.ch/ch1903_wgs84_de.pdf. One of CH1903,UTM,UPS,PROJ4 or LOCAL '); + fielddisplay(obj,'output_coordparam',''); + fielddisplay(obj,'output_time_zone',''); + fielddisplay(obj,'output_meteopath','Path to the outputs (this path MUST exist, it won''t be created)'); + fielddisplay(obj,'output_experiment','Option to give an additional simulation specific output name to the run in addition to "STATION_NAME"'); + fielddisplay(obj,'output_ts_write','Write meteo data out? (0 or 1)'); + fielddisplay(obj,'output_ts_start','When to start writing meteo data out (offset, in days)'); + fielddisplay(obj,'output_ts_days_between','How often to write meteo data out (in days: 3 hours=.125, 1 hour=4.1666e-2)'); + fielddisplay(obj,'output_profile','How to write the profiles (default: ASCII, choice is ASCII,IMIS or ASCII IMIS)'); +)'); + fielddisplay(obj,'output_prof_write','Write profile data out? (0 or 1) '); + fielddisplay(obj,'output_prof_start','When to start writing profile data out (offset, in days)'); + fielddisplay(obj,'output_prof_days_between','How often to write profile data out (in days: 3 hours=.125, 1 hour=4.1666e-2)'); % }}} disp(sprintf('\n %s','Interpolations1d parameters:')); % {{{ - fielddisplay(obj,'interpolations1d_window_size',' '); %that is 5 d and 2 h; 1 d = 86400 - fielddisplay(obj,'interpolations1d_hnw_resample',' '); - fielddisplay(obj,'interpolations1d_hs_resample',' '); - fielddisplay(obj,'interpolations1d_tsg_resample',' '); - fielddisplay(obj,'interpolations1d_rho_hn_resample',' '); - fielddisplay(obj,'interpolations1d_vw_resample',' '); - fielddisplay(obj,'interpolations1d_vw_args',' '); + fielddisplay(obj,'interpolations1d_window_size','Affects resampling: expresses (in seconds) how far a valid point can be searched for when re-interpolating a missing value'); + fielddisplay(obj,'interpolations1d_hnw_resample','NONE, NEAREST_NEIGHBOUR, ACCUMULATE or LINEAR'); + '); + fielddisplay(obj,'interpolations1d_hs_resample','Mean average processing. The mean average filter returns the mean value of all values within a user given time window. (NONE, NEAREST_NEIGHBOUR, ACCUMULATE or LINEAR)'); + fielddisplay(obj,'interpolations1d_tsg_resample','Mean average processing. The mean average filter returns the mean value of all values within a user given time window.(NONE, NEAREST_NEIGHBOUR, ACCUMULATE or LINEAR)'); + fielddisplay(obj,'interpolations1d_rho_hn_resample','(NONE, NEAREST_NEIGHBOUR, ACCUMULATE or LINEAR)'); + fielddisplay(obj,'interpolations1d_vw_resample','(NONE, NEAREST_NEIGHBOUR, ACCUMULATE or LINEAR)'); + fielddisplay(obj,'interpolations1d_vw_args','default nothing, otherwise, ''extrapolcate'''); % }}} disp(sprintf('\n %s','Filters parameters:')); % {{{ fielddisplay(obj,'filters_ta_filter1',' ');