1 | /*!\file: QmuStatisticsx routines
|
---|
2 | */
|
---|
3 | /*includes and prototypes:*/
|
---|
4 | #include <sys/stat.h>
|
---|
5 | #include "./QmuStatisticsx.h"
|
---|
6 | #include "../OutputResultsx/OutputResultsx.h"
|
---|
7 |
|
---|
8 | int DakotaStatistics(int argc,char** argv){ /*{{{*/
|
---|
9 |
|
---|
10 | /*Variables:{{{*/
|
---|
11 | char* input_file;
|
---|
12 | FILE* fid;
|
---|
13 | IoModel* iomodel=NULL;
|
---|
14 | ISSM_MPI_Comm statcomm;
|
---|
15 | int my_rank;
|
---|
16 |
|
---|
17 | //qmu statistics
|
---|
18 | bool statistics = false;
|
---|
19 | int numstatistics = 0;
|
---|
20 | int numdirectories = 0;
|
---|
21 | int nfilesperdirectory = 0;
|
---|
22 | char string[1000];
|
---|
23 | char* name = NULL;
|
---|
24 | char** fields = NULL;
|
---|
25 | int nfields;
|
---|
26 | int* steps=NULL;
|
---|
27 | int nsteps;
|
---|
28 | int nbins;
|
---|
29 | int* indices=NULL;
|
---|
30 | int nindices;
|
---|
31 | int nsamples;
|
---|
32 | int dummy;
|
---|
33 | char* directory=NULL;
|
---|
34 | char* model=NULL;
|
---|
35 | Results* results=NULL;
|
---|
36 | Parameters* parameters=NULL;
|
---|
37 | int color;
|
---|
38 | /*}}}*/
|
---|
39 | //First things first, set the communicator as a global variable and be sure we are all here: {{{
|
---|
40 | IssmComm::SetComm(MPI_COMM_WORLD);
|
---|
41 | my_rank=IssmComm::GetRank();
|
---|
42 |
|
---|
43 | /*Barrier:*/
|
---|
44 | ISSM_MPI_Barrier(IssmComm::GetComm());
|
---|
45 | _printf0_("Dakota Statistic Computation" << "\n");
|
---|
46 | /*}}}*/
|
---|
47 | //Open model input file for reading {{{
|
---|
48 | input_file=xNew<char>((strlen(argv[2])+strlen(argv[3])+strlen(".bin")+2));
|
---|
49 | sprintf(input_file,"%s/%s%s",argv[2],argv[3],".bin");
|
---|
50 | fid=fopen(input_file,"rb");
|
---|
51 | if (fid==NULL) Cerr << "issm_dakota_statistics error message: could not open model " << input_file << " to retrieve qmu statistics parameters" << std::endl;
|
---|
52 | //}}}
|
---|
53 | //Initialize IoModel, but light version, we'll need it to fetch constants: {{{
|
---|
54 | iomodel=new IoModel();
|
---|
55 | iomodel->fid=fid;
|
---|
56 | iomodel->FetchConstants();
|
---|
57 | /*}}}*/
|
---|
58 | //Early return if statistics not requested: {{{
|
---|
59 | iomodel->FindConstant(&statistics,"md.qmu.statistics");
|
---|
60 | if(!statistics){
|
---|
61 | delete iomodel;
|
---|
62 | xDelete<char>(input_file);
|
---|
63 | fclose(fid);
|
---|
64 | return 0;
|
---|
65 | }
|
---|
66 | /*}}}*/
|
---|
67 | //Create parameters datasets with al the qmu statistics settings we need: {{{
|
---|
68 |
|
---|
69 | /*Initialize parameters and results:*/
|
---|
70 | results = new Results();
|
---|
71 | parameters=new Parameters();
|
---|
72 |
|
---|
73 | //solution type:
|
---|
74 | parameters->AddObject(new IntParam(SolutionTypeEnum,StatisticsSolutionEnum));
|
---|
75 |
|
---|
76 | //root directory
|
---|
77 | directory=xNew<char>(strlen(argv[2])+1);
|
---|
78 | xMemCpy<char>(directory,argv[2],strlen(argv[2])+1);
|
---|
79 | parameters->AddObject(new StringParam(DirectoryNameEnum,directory));
|
---|
80 |
|
---|
81 | //model name
|
---|
82 | model=xNew<char>(strlen(argv[3])+1);
|
---|
83 | xMemCpy<char>(model,argv[3],strlen(argv[3])+1);
|
---|
84 | parameters->AddObject(new StringParam(InputFileNameEnum,model));
|
---|
85 |
|
---|
86 | //nsamples
|
---|
87 | iomodel->FindConstant(&nsamples,"md.qmu.method.params.samples");
|
---|
88 | parameters->AddObject(new IntParam(QmuNsampleEnum,nsamples));
|
---|
89 |
|
---|
90 | //ndirectories
|
---|
91 | iomodel->FindConstant(&numdirectories,"md.qmu.statistics.ndirectories");
|
---|
92 | parameters->AddObject(new IntParam(QmuNdirectoriesEnum,numdirectories));
|
---|
93 |
|
---|
94 | //nfiles per directory
|
---|
95 | iomodel->FindConstant(&nfilesperdirectory,"md.qmu.statistics.nfiles_per_directory");
|
---|
96 | parameters->AddObject(new IntParam(QmuNfilesPerDirectoryEnum,nfilesperdirectory));
|
---|
97 | /*}}}*/
|
---|
98 | /*Create MPI world: {{{*/
|
---|
99 | //At this point, we don't want to go forward any longer, we want to create an MPI
|
---|
100 | //communicator on which to carry out the computations:
|
---|
101 | if ((my_rank+1)*nfilesperdirectory>nsamples)color=MPI_UNDEFINED;
|
---|
102 | else color=0;
|
---|
103 | ISSM_MPI_Comm_split(ISSM_MPI_COMM_WORLD,color, my_rank, &statcomm);
|
---|
104 | /*}}}*/
|
---|
105 |
|
---|
106 | iomodel->FindConstant(&numstatistics,"md.qmu.statistics.numstatistics");
|
---|
107 | for (int i=1;i<=numstatistics;i++){
|
---|
108 |
|
---|
109 | char* directory=NULL;
|
---|
110 | char* model=NULL;
|
---|
111 | int nsamples;
|
---|
112 | _printf0_("Dealing with qmu statistical computation #" << i << "\n");
|
---|
113 |
|
---|
114 | sprintf(string,"md.qmu.statistics.method(%i).name",i);
|
---|
115 | iomodel->FindConstant(&name,string);
|
---|
116 |
|
---|
117 | sprintf(string,"md.qmu.statistics.method(%i).fields",i);
|
---|
118 | iomodel->FindConstant(&fields,&nfields,string);
|
---|
119 | parameters->AddObject(new StringArrayParam(FieldsEnum,fields,nfields));
|
---|
120 |
|
---|
121 | sprintf(string,"md.qmu.statistics.method(%i).steps",i);
|
---|
122 | iomodel->FetchData(&steps,&dummy,&nsteps,string);
|
---|
123 | parameters->AddObject(new IntVecParam(StepsEnum,steps,nsteps));
|
---|
124 |
|
---|
125 | if (strcmp(name,"Histogram")==0){
|
---|
126 | /*fetch nbins: */
|
---|
127 | sprintf(string,"md.qmu.statistics.method(%i).nbins",i);
|
---|
128 | iomodel->FindConstant(&nbins,string);
|
---|
129 | parameters->AddObject(new IntParam(NbinsEnum,nbins));
|
---|
130 | ComputeHistogram(parameters,results,color,statcomm);
|
---|
131 | }
|
---|
132 | else if (strcmp(name,"SampleSeries")==0){
|
---|
133 | /*fetch indices: */
|
---|
134 | sprintf(string,"md.qmu.statistics.method(%i).indices",i);
|
---|
135 | iomodel->FetchData(&indices,&dummy,&nindices,string);
|
---|
136 | parameters->AddObject(new IntVecParam(IndicesEnum,indices,nindices));
|
---|
137 |
|
---|
138 | ComputeSampleSeries(parameters,results,color,statcomm);
|
---|
139 | }
|
---|
140 | else if (strcmp(name,"MeanVariance")==0){
|
---|
141 | ComputeMeanVariance(parameters,results,color,statcomm);
|
---|
142 | }
|
---|
143 | else _error_(" error creating qmu statistics methods parameters: unsupported method " << name);
|
---|
144 | }
|
---|
145 |
|
---|
146 | /*Delete resources:*/
|
---|
147 | xDelete<char>(input_file);
|
---|
148 | delete iomodel;
|
---|
149 |
|
---|
150 | //close model file:
|
---|
151 | fclose(fid);
|
---|
152 |
|
---|
153 | /*output results:*/
|
---|
154 | OutputStatistics(parameters,results,color,statcomm);
|
---|
155 |
|
---|
156 | /*all meet here: */
|
---|
157 | ISSM_MPI_Barrier(ISSM_MPI_COMM_WORLD); _printf0_("Output file.\n");
|
---|
158 |
|
---|
159 | /*Delete resources:*/
|
---|
160 | delete parameters;
|
---|
161 | delete results;
|
---|
162 |
|
---|
163 | return 1;
|
---|
164 | } /*}}}*/
|
---|
165 | int ComputeHistogram(Parameters* parameters,Results* results,int color, ISSM_MPI_Comm statcomm){ /*{{{*/
|
---|
166 |
|
---|
167 | int nsamples;
|
---|
168 | char* directory=NULL;
|
---|
169 | char* model=NULL;
|
---|
170 | char** fields=NULL;
|
---|
171 | int* steps=NULL;
|
---|
172 | int nsteps;
|
---|
173 | int nfields;
|
---|
174 | int nbins;
|
---|
175 | int range,lower_row,upper_row;
|
---|
176 | int nfilesperdirectory;
|
---|
177 |
|
---|
178 | /*intermediary:*/
|
---|
179 | IssmDouble* doublemat=NULL;
|
---|
180 | int doublematsize;
|
---|
181 | IssmDouble scalar;
|
---|
182 |
|
---|
183 | /*computation of average and variance itself:*/
|
---|
184 | IssmDouble** maxxs = NULL;
|
---|
185 | IssmDouble** minxs = NULL;
|
---|
186 | int* xtype=NULL;
|
---|
187 | int* xsize=NULL;
|
---|
188 |
|
---|
189 | IssmDouble** maxmeans=NULL;
|
---|
190 | IssmDouble** minmeans=NULL;
|
---|
191 | int* meanxtype=NULL;
|
---|
192 | int* meanxsize=NULL;
|
---|
193 |
|
---|
194 | /*only work on the statistical communicator: */
|
---|
195 | if (color==MPI_UNDEFINED)return 0;
|
---|
196 |
|
---|
197 | /*Retrieve parameters:*/
|
---|
198 | parameters->FindParam(&nfilesperdirectory,QmuNfilesPerDirectoryEnum);
|
---|
199 | parameters->FindParam(&nsamples,QmuNsampleEnum);
|
---|
200 | parameters->FindParam(&directory,DirectoryNameEnum);
|
---|
201 | parameters->FindParam(&model,InputFileNameEnum);
|
---|
202 | parameters->FindParam(&fields,&nfields,FieldsEnum);
|
---|
203 | parameters->FindParam(&steps,&nsteps,StepsEnum);
|
---|
204 | parameters->FindParam(&nbins,NbinsEnum);
|
---|
205 |
|
---|
206 | /*Get rank from the stat comm communicator:*/
|
---|
207 | IssmComm::SetComm(statcomm);
|
---|
208 | int my_rank=IssmComm::GetRank();
|
---|
209 |
|
---|
210 | /*Open files and read them complelety, in a distributed way:*/
|
---|
211 | range=DetermineLocalSize(nsamples,IssmComm::GetComm());
|
---|
212 | GetOwnershipBoundariesFromRange(&lower_row,&upper_row,range,IssmComm::GetComm());
|
---|
213 |
|
---|
214 | /*Initialize arrays:*/
|
---|
215 | maxmeans=xNew<IssmDouble*>(nfields);
|
---|
216 | minmeans=xNew<IssmDouble*>(nfields);
|
---|
217 | meanxtype=xNew<int>(nfields);
|
---|
218 | meanxsize=xNew<int>(nfields);
|
---|
219 |
|
---|
220 | maxxs=xNew<IssmDouble*>(nfields*nsteps);
|
---|
221 | minxs=xNew<IssmDouble*>(nfields*nsteps);
|
---|
222 | xtype=xNew<int>(nfields*nsteps);
|
---|
223 | xsize=xNew<int>(nfields*nsteps);
|
---|
224 |
|
---|
225 | /*Start opening files:*/
|
---|
226 | for(int i=(lower_row+1);i<=upper_row;i++){
|
---|
227 | _printf0_("reading file #: " << i << "\n");
|
---|
228 | /*First read file to figure out size of it in order to create memory buffer mapping into the file. {{{
|
---|
229 | *This makes it much more efficient to read files without lag.:*/
|
---|
230 | char file[1000];
|
---|
231 | long int length;
|
---|
232 | char* buffer=NULL;
|
---|
233 |
|
---|
234 | /*string:*/
|
---|
235 | sprintf(file,"%s/%i/%s.outbin.%i",directory,my_rank+1,model,i);
|
---|
236 |
|
---|
237 | /*open file: */
|
---|
238 | _printf0_(" opening file: " << file << "\n");
|
---|
239 | FILE* fid=fopen(file,"rb");
|
---|
240 | if(fid==NULL)_error_("cound not open file: " << file << "\n");
|
---|
241 |
|
---|
242 | /*figure out size of file, and read the whole thing:*/
|
---|
243 | _printf0_(" reading file:\n");
|
---|
244 | fseek(fid, 0, SEEK_END);
|
---|
245 | length = ftell (fid);
|
---|
246 | fseek(fid, 0, SEEK_SET);
|
---|
247 | buffer = xNew<char>(length);
|
---|
248 | fread(buffer, sizeof(char), length, fid);
|
---|
249 |
|
---|
250 | /*close file:*/
|
---|
251 | fclose(fid);
|
---|
252 |
|
---|
253 | /*create a memory stream with this buffer which will be use to read the files:*/
|
---|
254 | _printf0_(" processing file:\n");
|
---|
255 | fid=fmemopen(buffer, length, "rb");
|
---|
256 | /*}}}*/
|
---|
257 | /*Figure out for each field, each time step, arrays on each cpu holwing min anx max values:{{{*/
|
---|
258 | for (int f=0;f<nfields;f++){
|
---|
259 | char* field=fields[f];
|
---|
260 | fseek(fid,0,SEEK_SET);
|
---|
261 | for (int j=0;j<nsteps;j++){
|
---|
262 | int counter=f*nsteps+j;
|
---|
263 | xtype[counter]=readdata(&doublemat, &doublematsize, &scalar, fid,field,steps[j]);
|
---|
264 | if(i==(lower_row+1)){
|
---|
265 | if(xtype[counter]==1){
|
---|
266 | maxxs[counter]=xNew<IssmDouble>(1);
|
---|
267 | minxs[counter]=xNew<IssmDouble>(1);
|
---|
268 | *maxxs[counter]=scalar;
|
---|
269 | *minxs[counter]=scalar;
|
---|
270 | xsize[counter]=1;
|
---|
271 | }
|
---|
272 | else if (xtype[counter]==3){
|
---|
273 | maxxs[counter]=xNew<IssmDouble>(doublematsize);
|
---|
274 | xMemCpy<IssmDouble>(maxxs[counter],doublemat,doublematsize);
|
---|
275 | minxs[counter]=xNew<IssmDouble>(doublematsize);
|
---|
276 | xMemCpy<IssmDouble>(minxs[counter],doublemat,doublematsize);
|
---|
277 | xsize[counter]=doublematsize;
|
---|
278 | xDelete<IssmDouble>(doublemat);
|
---|
279 | }
|
---|
280 | else _error_("cannot carry out statistics on type " << xtype[counter]);
|
---|
281 | }
|
---|
282 | else{
|
---|
283 | if(xtype[counter]==1){
|
---|
284 | *maxxs[counter]=max(*maxxs[counter],scalar);
|
---|
285 | *minxs[counter]=min(*minxs[counter],scalar);
|
---|
286 | }
|
---|
287 | else if (xtype[counter]==3){
|
---|
288 | IssmDouble* newmax=maxxs[counter];
|
---|
289 | IssmDouble* newmin=minxs[counter];
|
---|
290 | for(int k=0;k<doublematsize;k++){
|
---|
291 | if(doublemat[k]>newmax[k])newmax[k]=doublemat[k];
|
---|
292 | if(doublemat[k]<newmin[k])newmin[k]=doublemat[k];
|
---|
293 | }
|
---|
294 | xDelete<IssmDouble>(doublemat);
|
---|
295 | }
|
---|
296 | else _error_("cannot carry out statistics on type " << xtype[counter]);
|
---|
297 | }
|
---|
298 | }
|
---|
299 | }
|
---|
300 | /*}}}*/
|
---|
301 | /*Same thing for average in time:{{{*/
|
---|
302 | _printf0_(" average in time:\n");
|
---|
303 |
|
---|
304 | /*Deal with average in time: */
|
---|
305 | for (int f=0;f<nfields;f++){
|
---|
306 | fseek(fid,0,SEEK_SET);
|
---|
307 | char* field=fields[f];
|
---|
308 | meanxtype[f]=readdata(&doublemat, &doublematsize, &scalar, fid,field,steps[0]);
|
---|
309 |
|
---|
310 | if(meanxtype[f]==1){
|
---|
311 | meanxsize[f]=1;
|
---|
312 | IssmDouble timemean=0;
|
---|
313 | fseek(fid,0,SEEK_SET);
|
---|
314 | for (int j=0;j<nsteps;j++){
|
---|
315 | readdata(&doublemat, &doublematsize, &scalar, fid,field,steps[j]);
|
---|
316 | timemean+=scalar/nsteps;
|
---|
317 | }
|
---|
318 |
|
---|
319 | /*Figure out max and min of time means: */
|
---|
320 | if(i==(lower_row+1)){
|
---|
321 | maxmeans[f]=xNewZeroInit<IssmDouble>(1);
|
---|
322 | minmeans[f]=xNewZeroInit<IssmDouble>(1);
|
---|
323 | *maxmeans[f]=timemean;
|
---|
324 | *minmeans[f]=timemean;
|
---|
325 | }
|
---|
326 | else{
|
---|
327 | *maxmeans[f]=max(*maxmeans[f],timemean);
|
---|
328 | *minmeans[f]=min(*minmeans[f],timemean);
|
---|
329 | }
|
---|
330 | }
|
---|
331 | else{
|
---|
332 | meanxsize[f]=doublematsize;
|
---|
333 | fseek(fid,0,SEEK_SET);
|
---|
334 | IssmDouble* timemean=xNewZeroInit<IssmDouble>(doublematsize);
|
---|
335 | for (int j=0;j<nsteps;j++){
|
---|
336 | readdata(&doublemat, &doublematsize, &scalar, fid,field,steps[j]);
|
---|
337 | for (int k=0;k<doublematsize;k++){
|
---|
338 | timemean[k]+=doublemat[k]/nsteps;
|
---|
339 | }
|
---|
340 | xDelete<IssmDouble>(doublemat);
|
---|
341 | }
|
---|
342 |
|
---|
343 | if(i==(lower_row+1)){
|
---|
344 | maxmeans[f]=xNew<IssmDouble>(doublematsize);
|
---|
345 | xMemCpy<IssmDouble>(maxmeans[f],timemean,doublematsize);
|
---|
346 | minmeans[f]=xNew<IssmDouble>(doublematsize);
|
---|
347 | xMemCpy<IssmDouble>(minmeans[f],timemean,doublematsize);
|
---|
348 | }
|
---|
349 | else{
|
---|
350 | IssmDouble* maxx=maxmeans[f];
|
---|
351 | IssmDouble* minx=minmeans[f];
|
---|
352 |
|
---|
353 | for(int k=0;k<doublematsize;k++){
|
---|
354 | maxx[k]=max(maxx[k],timemean[k]);
|
---|
355 | minx[k]=min(minx[k],timemean[k]);
|
---|
356 | }
|
---|
357 | maxmeans[f]=maxx;
|
---|
358 | minmeans[f]=minx;
|
---|
359 | }
|
---|
360 | }
|
---|
361 | }
|
---|
362 | /*}}}*/
|
---|
363 | /*Done reading files, close buffer and free memory:{{{*/
|
---|
364 | fclose(fid);
|
---|
365 | xDelete<char>(buffer);
|
---|
366 | /*}}}*/
|
---|
367 | }
|
---|
368 | ISSM_MPI_Barrier(IssmComm::GetComm());
|
---|
369 | _printf0_("Done reading files, now computing min and max.\n");
|
---|
370 |
|
---|
371 | /*We have collected minx and max across the cluster, now gather across the cluster onto
|
---|
372 | *cpu0 and then compute statistics:*/
|
---|
373 | for (int f=0;f<nfields;f++){
|
---|
374 | int counter0=f*nsteps+0;
|
---|
375 | if (xtype[counter0]==1){ /*deal with scalars {{{*/
|
---|
376 | for (int j=0;j<nsteps;j++){
|
---|
377 | int counter=f*nsteps+j;
|
---|
378 |
|
---|
379 | /*we are broadcasting doubles:*/
|
---|
380 | IssmDouble maxscalar=*maxxs[counter];
|
---|
381 | IssmDouble minscalar=*minxs[counter];
|
---|
382 | IssmDouble allmaxscalar;
|
---|
383 | IssmDouble allminscalar;
|
---|
384 | IssmDouble sumscalar_alltimes=0;
|
---|
385 |
|
---|
386 | ISSM_MPI_Allreduce(&maxscalar,&allmaxscalar,1,ISSM_MPI_PDOUBLE,ISSM_MPI_MAX,IssmComm::GetComm());
|
---|
387 | ISSM_MPI_Allreduce(&minscalar,&allminscalar,1,ISSM_MPI_PDOUBLE,ISSM_MPI_MIN,IssmComm::GetComm());
|
---|
388 |
|
---|
389 | /*Store broadcasted value for later computation of histograms:*/
|
---|
390 | *maxxs[counter]=allmaxscalar;
|
---|
391 | *minxs[counter]=allminscalar;
|
---|
392 |
|
---|
393 | }
|
---|
394 | } /*}}}*/
|
---|
395 | else{ /*deal with arrays:{{{*/
|
---|
396 |
|
---|
397 | int size=xsize[counter0];
|
---|
398 | for (int j=0;j<nsteps;j++){
|
---|
399 | int counter=f*nsteps+j;
|
---|
400 |
|
---|
401 | /*we are broadcasting double arrays:*/
|
---|
402 | IssmDouble* maxx=maxxs[counter];
|
---|
403 | IssmDouble* minx=minxs[counter];
|
---|
404 |
|
---|
405 | IssmDouble* allmax=xNew<IssmDouble>(size);
|
---|
406 | IssmDouble* allmin=xNew<IssmDouble>(size);
|
---|
407 |
|
---|
408 | ISSM_MPI_Allreduce(maxx,allmax,size,ISSM_MPI_PDOUBLE,ISSM_MPI_MAX,IssmComm::GetComm());
|
---|
409 | ISSM_MPI_Allreduce(minx,allmin,size,ISSM_MPI_PDOUBLE,ISSM_MPI_MIN,IssmComm::GetComm());
|
---|
410 |
|
---|
411 | /*Store broadcasted value for later computation of histograms:*/
|
---|
412 | maxxs[counter]=allmax;
|
---|
413 | minxs[counter]=allmin;
|
---|
414 | }
|
---|
415 | } /*}}}*/
|
---|
416 | }
|
---|
417 |
|
---|
418 | /*Now do the same for the time mean fields:*/
|
---|
419 | for (int f=0;f<nfields;f++){
|
---|
420 | if (meanxtype[f]==1){ /*deal with scalars {{{*/
|
---|
421 |
|
---|
422 | /*we are broadcasting doubles:*/
|
---|
423 | IssmDouble maxscalar=*maxmeans[f];
|
---|
424 | IssmDouble minscalar=*minmeans[f];
|
---|
425 | IssmDouble allmaxscalar;
|
---|
426 | IssmDouble allminscalar;
|
---|
427 |
|
---|
428 | ISSM_MPI_Allreduce(&maxscalar,&allmaxscalar,1,ISSM_MPI_PDOUBLE,ISSM_MPI_MAX,IssmComm::GetComm());
|
---|
429 | ISSM_MPI_Allreduce(&minscalar,&allminscalar,1,ISSM_MPI_PDOUBLE,ISSM_MPI_MIN,IssmComm::GetComm());
|
---|
430 |
|
---|
431 | /*Store for later use in histogram computation:*/
|
---|
432 | *maxmeans[f]=allmaxscalar;
|
---|
433 | *minmeans[f]=allminscalar;
|
---|
434 |
|
---|
435 | } /*}}}*/
|
---|
436 | else{ /*deal with arrays:{{{*/
|
---|
437 |
|
---|
438 | int size=meanxsize[f];
|
---|
439 |
|
---|
440 | /*we are broadcasting double arrays:*/
|
---|
441 | IssmDouble* maxx=maxmeans[f];
|
---|
442 | IssmDouble* minx=minmeans[f];
|
---|
443 |
|
---|
444 | IssmDouble* allmax=xNew<IssmDouble>(size);
|
---|
445 | IssmDouble* allmin=xNew<IssmDouble>(size);
|
---|
446 |
|
---|
447 | ISSM_MPI_Allreduce(maxx,allmax,size,ISSM_MPI_PDOUBLE,ISSM_MPI_MAX,IssmComm::GetComm());
|
---|
448 | ISSM_MPI_Allreduce(minx,allmin,size,ISSM_MPI_PDOUBLE,ISSM_MPI_MIN,IssmComm::GetComm());
|
---|
449 |
|
---|
450 | /*Store for later use in histogram computation:*/
|
---|
451 | maxmeans[f]=allmax;
|
---|
452 | minmeans[f]=allmin;
|
---|
453 |
|
---|
454 | } /*}}}*/
|
---|
455 | }
|
---|
456 |
|
---|
457 | /*Now that we have the min and max, we can start binning. First allocate
|
---|
458 | * histograms, then start filling them:*/
|
---|
459 | IssmDouble** histogram=xNew<IssmDouble*>(nfields*nsteps);
|
---|
460 | IssmDouble** timehistogram=xNew<IssmDouble*>(nfields);
|
---|
461 | _printf0_("Start reading files again, this time binning values in the histogram:\n");
|
---|
462 | /*Start opening files:*/
|
---|
463 | for (int i=(lower_row+1);i<=upper_row;i++){
|
---|
464 | _printf0_("reading file #: " << i << "\n");
|
---|
465 | /*read file and make a buffer:{{{*/
|
---|
466 | char file[1000];
|
---|
467 | long int length;
|
---|
468 | char* buffer=NULL;
|
---|
469 |
|
---|
470 | /*string:*/
|
---|
471 | sprintf(file,"%s/%i/%s.outbin.%i",directory,my_rank+1,model,i);
|
---|
472 |
|
---|
473 | /*open file: */
|
---|
474 | _printf0_(" opening file:\n");
|
---|
475 | FILE* fid=fopen(file,"rb");
|
---|
476 | if(fid==NULL)_error_("cound not open file: " << file << "\n");
|
---|
477 |
|
---|
478 | /*figure out size of file, and read the whole thing:*/
|
---|
479 | _printf0_(" reading file:\n");
|
---|
480 | fseek (fid, 0, SEEK_END);
|
---|
481 | length = ftell (fid);
|
---|
482 | fseek (fid, 0, SEEK_SET);
|
---|
483 | buffer = xNew<char>(length);
|
---|
484 | fread (buffer, sizeof(char), length, fid);
|
---|
485 |
|
---|
486 | /*close file:*/
|
---|
487 | fclose (fid);
|
---|
488 |
|
---|
489 | /*create a memory stream with this buffer:*/
|
---|
490 | _printf0_(" processing file:\n");
|
---|
491 | fid=fmemopen(buffer, length, "rb");
|
---|
492 | /*}}}*/
|
---|
493 | /*read data and fill up the histogram using the min and max values from before:{{{*/
|
---|
494 | for (int f=0;f<nfields;f++){
|
---|
495 | char* field=fields[f];
|
---|
496 | fseek(fid,0,SEEK_SET);
|
---|
497 | for (int j=0;j<nsteps;j++){
|
---|
498 | int counter=f*nsteps+j;
|
---|
499 | xtype[counter]=readdata(&doublemat, &doublematsize, &scalar, fid,field,steps[j]);
|
---|
500 | if(i==(lower_row+1)){
|
---|
501 | if(xtype[counter]==1){
|
---|
502 | IssmDouble* localhistogram=xNewZeroInit<IssmDouble>(nbins);
|
---|
503 | IssmDouble ma=*maxxs[counter];
|
---|
504 | IssmDouble mi=*minxs[counter];
|
---|
505 | int index=(scalar-mi)/(ma-mi)*nbins; if (index==nbins)index--;
|
---|
506 | if(ma==mi)index=0;
|
---|
507 | //_printf_( index << "|" << scalar << "|" << mi << "|" << ma << "|" << nbins << "\n");
|
---|
508 | localhistogram[index]++;
|
---|
509 | histogram[counter]=localhistogram;
|
---|
510 | }
|
---|
511 | else if (xtype[counter]==3){
|
---|
512 | IssmDouble* localhistogram=xNewZeroInit<IssmDouble>(doublematsize*nbins);
|
---|
513 | IssmDouble* ma=maxxs[counter];
|
---|
514 | IssmDouble* mi=minxs[counter];
|
---|
515 | for (int k=0;k<doublematsize;k++){
|
---|
516 | IssmDouble scalar=doublemat[k];
|
---|
517 | int index=(scalar-mi[k])/(ma[k]-mi[k])*nbins; if (index==nbins)index--;
|
---|
518 | if (mi[k]==ma[k])index=0;
|
---|
519 | _assert_(scalar<=ma[k]); _assert_(scalar>=mi[k]); _assert_(index<nbins);
|
---|
520 | localhistogram[k*nbins+index]++;
|
---|
521 | }
|
---|
522 | histogram[counter]=localhistogram;
|
---|
523 | xDelete<IssmDouble>(doublemat);
|
---|
524 | }
|
---|
525 | else _error_("cannot carry out statistics on type " << xtype[counter]);
|
---|
526 | }
|
---|
527 | else{
|
---|
528 | if(xtype[counter]==1){
|
---|
529 | IssmDouble* localhistogram=histogram[counter];
|
---|
530 | IssmDouble ma=*maxxs[counter];
|
---|
531 | IssmDouble mi=*minxs[counter];
|
---|
532 | int index=(scalar-mi)/(ma-mi)*nbins; if (index==nbins)index=nbins-1;
|
---|
533 | if(ma==mi)index=0;
|
---|
534 | localhistogram[index]++;
|
---|
535 | }
|
---|
536 | else if (xtype[counter]==3){
|
---|
537 | IssmDouble* localhistogram=histogram[counter];
|
---|
538 | IssmDouble* ma=maxxs[counter];
|
---|
539 | IssmDouble* mi=minxs[counter];
|
---|
540 | for (int k=0;k<doublematsize;k++){
|
---|
541 | IssmDouble scalar=doublemat[k];
|
---|
542 | int index=(scalar-mi[k])/(ma[k]-mi[k])*nbins; if (index==nbins)index=nbins-1;
|
---|
543 | if (mi[k]==ma[k])index=0;
|
---|
544 |
|
---|
545 | localhistogram[k*nbins+index]++;
|
---|
546 | }
|
---|
547 | xDelete<IssmDouble>(doublemat);
|
---|
548 | }
|
---|
549 | else _error_("cannot carry out statistics on type " << xtype[counter]);
|
---|
550 | }
|
---|
551 | }
|
---|
552 | }
|
---|
553 | /*}}}*/
|
---|
554 | /*Deal with average in time: {{{*/
|
---|
555 | _printf0_(" average in time:\n");
|
---|
556 | for (int f=0;f<nfields;f++){
|
---|
557 | fseek(fid,0,SEEK_SET);
|
---|
558 | char* field=fields[f];
|
---|
559 | meanxtype[f]=readdata(&doublemat, &doublematsize, &scalar, fid,field,steps[0]);
|
---|
560 |
|
---|
561 | if(meanxtype[f]==1){
|
---|
562 | IssmDouble timemean=0;
|
---|
563 | fseek(fid,0,SEEK_SET);
|
---|
564 | for (int j=0;j<nsteps;j++){
|
---|
565 | readdata(&doublemat, &doublematsize, &scalar, fid,field,steps[j]);
|
---|
566 | timemean+=scalar/nsteps;
|
---|
567 | }
|
---|
568 |
|
---|
569 | /*Figure out max and min of time means: */
|
---|
570 | if(i==(lower_row+1)){
|
---|
571 | IssmDouble* localhistogram=xNewZeroInit<IssmDouble>(nbins);
|
---|
572 | IssmDouble ma=*maxmeans[f];
|
---|
573 | IssmDouble mi=*minmeans[f];
|
---|
574 | int index=(timemean-mi)/(ma-mi)*nbins; if (index==nbins)index=nbins-1;
|
---|
575 | if(ma==mi)index=0;
|
---|
576 | localhistogram[index]++;
|
---|
577 | timehistogram[f]=localhistogram;
|
---|
578 | }
|
---|
579 | else{
|
---|
580 | IssmDouble* localhistogram=timehistogram[f];
|
---|
581 | IssmDouble ma=*maxmeans[f];
|
---|
582 | IssmDouble mi=*minmeans[f];
|
---|
583 | int index=(timemean-mi)/(ma-mi)*nbins; if (index==nbins)index=nbins-1;
|
---|
584 | if(ma==mi)index=0;
|
---|
585 | localhistogram[index]++;
|
---|
586 | }
|
---|
587 | }
|
---|
588 | else{
|
---|
589 | fseek(fid,0,SEEK_SET);
|
---|
590 | IssmDouble* timemean=xNewZeroInit<IssmDouble>(doublematsize);
|
---|
591 | for (int j=0;j<nsteps;j++){
|
---|
592 | readdata(&doublemat, &doublematsize, &scalar, fid,field,steps[j]);
|
---|
593 | for (int k=0;k<doublematsize;k++){
|
---|
594 | timemean[k]+=doublemat[k]/nsteps;
|
---|
595 | }
|
---|
596 | xDelete<IssmDouble>(doublemat);
|
---|
597 | }
|
---|
598 |
|
---|
599 | if(i==(lower_row+1)){
|
---|
600 | IssmDouble* localhistogram=xNewZeroInit<IssmDouble>(doublematsize*nbins);
|
---|
601 | IssmDouble* ma=maxmeans[f];
|
---|
602 | IssmDouble* mi=minmeans[f];
|
---|
603 |
|
---|
604 | for (int k=0;k<doublematsize;k++){
|
---|
605 | IssmDouble scalar=timemean[k];
|
---|
606 | int index=(scalar-mi[k])/(ma[k]-mi[k])*nbins; if (index==nbins)index=nbins-1;
|
---|
607 | if (mi[k]==ma[k])index=0;
|
---|
608 | localhistogram[k*nbins+index]++;
|
---|
609 | }
|
---|
610 | timehistogram[f]=localhistogram;
|
---|
611 | }
|
---|
612 | else{
|
---|
613 |
|
---|
614 | IssmDouble* localhistogram=timehistogram[f];
|
---|
615 | IssmDouble* ma=maxmeans[f];
|
---|
616 | IssmDouble* mi=minmeans[f];
|
---|
617 |
|
---|
618 | for (int k=0;k<doublematsize;k++){
|
---|
619 | IssmDouble scalar=timemean[k];
|
---|
620 | int index=(scalar-mi[k])/(ma[k]-mi[k])*nbins; if (index==nbins)index=nbins-1;
|
---|
621 | if (mi[k]==ma[k])index=0;
|
---|
622 |
|
---|
623 | localhistogram[k*nbins+index]++;
|
---|
624 | }
|
---|
625 | }
|
---|
626 | }
|
---|
627 | }
|
---|
628 | /*}}}*/
|
---|
629 | /*close file and delete allocation:{{{*/
|
---|
630 | fclose(fid);
|
---|
631 | xDelete<char>(buffer);
|
---|
632 | /*}}}*/
|
---|
633 | }
|
---|
634 |
|
---|
635 |
|
---|
636 | /*We have agregated histograms across the cluster, now gather them across the cluster onto
|
---|
637 | *cpu0: */
|
---|
638 | _printf0_("Collect histograms on cpu 0 and save to results:\n");
|
---|
639 | for (int f=0;f<nfields;f++){
|
---|
640 | int counter0=f*nsteps+0;
|
---|
641 | if (xtype[counter0]==1){ /*deal with scalars {{{*/
|
---|
642 | for (int j=0;j<nsteps;j++){
|
---|
643 | int counter=f*nsteps+j;
|
---|
644 |
|
---|
645 | /*we are broadcasting doubles:*/
|
---|
646 | IssmDouble* histo=histogram[counter]; //size nbins
|
---|
647 | IssmDouble* allhisto=xNewZeroInit<IssmDouble>(nbins);
|
---|
648 |
|
---|
649 | ISSM_MPI_Allreduce(histo,allhisto,nbins,ISSM_MPI_PDOUBLE,ISSM_MPI_SUM,IssmComm::GetComm());
|
---|
650 | xDelete<IssmDouble>(histo);
|
---|
651 |
|
---|
652 | /*add to results while deallocating as much as possible:*/
|
---|
653 | char fieldname[1000];
|
---|
654 | if(my_rank==0){
|
---|
655 | sprintf(fieldname,"%s%s",fields[f],"Histogram"); results->AddResult(new GenericExternalResult<IssmPDouble*>(results->Size()+1,fieldname,allhisto,1,nbins,j+1,0));
|
---|
656 | }
|
---|
657 | xDelete<IssmDouble>(allhisto);
|
---|
658 | if(my_rank==0){
|
---|
659 | sprintf(fieldname,"%s%s",fields[f],"Max"); results->AddResult(new GenericExternalResult<IssmDouble>(results->Size()+1,fieldname,*maxxs[counter],j+1,0));
|
---|
660 | sprintf(fieldname,"%s%s",fields[f],"Min"); results->AddResult(new GenericExternalResult<IssmDouble>(results->Size()+1,fieldname,*minxs[counter],j+1,0));
|
---|
661 | }
|
---|
662 | xDelete<IssmDouble>(maxxs[counter]);
|
---|
663 | xDelete<IssmDouble>(minxs[counter]);
|
---|
664 | }
|
---|
665 | } /*}}}*/
|
---|
666 | else{ /*deal with arrays:{{{*/
|
---|
667 |
|
---|
668 | int size=xsize[counter0];
|
---|
669 | for (int j=0;j<nsteps;j++){
|
---|
670 | int counter=f*nsteps+j;
|
---|
671 |
|
---|
672 | /*we are broadcasting double arrays:*/
|
---|
673 | IssmDouble* histo=histogram[counter];
|
---|
674 | IssmDouble* allhisto=xNew<IssmDouble>(size*nbins);
|
---|
675 |
|
---|
676 | ISSM_MPI_Allreduce(histo,allhisto,size*nbins,ISSM_MPI_PDOUBLE,ISSM_MPI_SUM,IssmComm::GetComm());
|
---|
677 | xDelete<IssmDouble>(histo);
|
---|
678 |
|
---|
679 | /*add to results:*/
|
---|
680 | char fieldname[1000];
|
---|
681 | if(my_rank==0){
|
---|
682 | sprintf(fieldname,"%s%s",fields[f],"Histogram"); results->AddResult(new GenericExternalResult<IssmPDouble*>(results->Size()+1,fieldname,allhisto,size,nbins,j+1,0));
|
---|
683 | }
|
---|
684 | xDelete<IssmDouble>(allhisto);
|
---|
685 | if(my_rank==0){
|
---|
686 | sprintf(fieldname,"%s%s",fields[f],"Max"); results->AddResult(new GenericExternalResult<IssmPDouble*>(results->Size()+1,fieldname,maxxs[counter],size,1,j+1,0));
|
---|
687 | sprintf(fieldname,"%s%s",fields[f],"Min"); results->AddResult(new GenericExternalResult<IssmPDouble*>(results->Size()+1,fieldname,minxs[counter],size,1,j+1,0));
|
---|
688 | }
|
---|
689 | xDelete<IssmDouble>(maxxs[counter]);
|
---|
690 | xDelete<IssmDouble>(minxs[counter]);
|
---|
691 | }
|
---|
692 | } /*}}}*/
|
---|
693 | }
|
---|
694 | /*Now do the same for the time mean fields:*/
|
---|
695 | _printf0_("Collect time mean histograms on cpu 0 and save to results:\n");
|
---|
696 | for (int f=0;f<nfields;f++){
|
---|
697 | if (meanxtype[f]==1){ /*deal with scalars {{{*/
|
---|
698 |
|
---|
699 | /*we are broadcasting doubles:*/
|
---|
700 | IssmDouble* histo=timehistogram[f];
|
---|
701 | IssmDouble* allhisto=xNewZeroInit<IssmDouble>(nbins);
|
---|
702 |
|
---|
703 | ISSM_MPI_Allreduce(histo,allhisto,nbins,ISSM_MPI_PDOUBLE,ISSM_MPI_MAX,IssmComm::GetComm());
|
---|
704 | xDelete<IssmDouble>(histo);
|
---|
705 |
|
---|
706 | /*add to results at time step 1:*/
|
---|
707 | char fieldname[1000];
|
---|
708 | if(my_rank==0){
|
---|
709 | sprintf(fieldname,"%s%s",fields[f],"TimeMeanHistogram"); results->AddResult(new GenericExternalResult<IssmPDouble*>(results->Size()+1,fieldname,allhisto,1,nbins,steps[0],0));
|
---|
710 | }
|
---|
711 | xDelete<IssmDouble>(allhisto);
|
---|
712 | if(my_rank==0){
|
---|
713 | sprintf(fieldname,"%s%s",fields[f],"TimeMeanMax"); results->AddResult(new GenericExternalResult<IssmDouble>(results->Size()+1,fieldname,*maxmeans[f],steps[0],0));
|
---|
714 | sprintf(fieldname,"%s%s",fields[f],"TimeMeaMin"); results->AddResult(new GenericExternalResult<IssmDouble>(results->Size()+1,fieldname,*minmeans[f],steps[0],0));
|
---|
715 | }
|
---|
716 | xDelete<IssmDouble>(maxmeans[f]);
|
---|
717 | xDelete<IssmDouble>(minmeans[f]);
|
---|
718 | } /*}}}*/
|
---|
719 | else{ /*deal with arrays:{{{*/
|
---|
720 |
|
---|
721 | int size=meanxsize[f];
|
---|
722 |
|
---|
723 | /*we are broadcasting double arrays:*/
|
---|
724 | IssmDouble* histo=timehistogram[f];
|
---|
725 | IssmDouble* allhisto=xNewZeroInit<IssmDouble>(size*nbins);
|
---|
726 |
|
---|
727 | ISSM_MPI_Allreduce(histo,allhisto,size*nbins,ISSM_MPI_PDOUBLE,ISSM_MPI_SUM,IssmComm::GetComm());
|
---|
728 | xDelete<IssmDouble>(histo);
|
---|
729 |
|
---|
730 | /*add to results at step 1:*/
|
---|
731 | char fieldname[1000];
|
---|
732 | if(my_rank==0){
|
---|
733 | sprintf(fieldname,"%s%s",fields[f],"TimeMeanHistogram"); results->AddResult(new GenericExternalResult<IssmPDouble*>(results->Size()+1,fieldname,allhisto,size,nbins,steps[0],0));
|
---|
734 | }
|
---|
735 | xDelete<IssmDouble>(allhisto);
|
---|
736 | if(my_rank==0){
|
---|
737 | sprintf(fieldname,"%s%s",fields[f],"TimeMeanMax"); results->AddResult(new GenericExternalResult<IssmPDouble*>(results->Size()+1,fieldname,maxmeans[f],size,1,steps[0],0));
|
---|
738 | sprintf(fieldname,"%s%s",fields[f],"TimeMeanMin"); results->AddResult(new GenericExternalResult<IssmPDouble*>(results->Size()+1,fieldname,minmeans[f],size,1,steps[0],0));
|
---|
739 | }
|
---|
740 | xDelete<IssmDouble>(maxmeans[f]);
|
---|
741 | xDelete<IssmDouble>(minmeans[f]);
|
---|
742 | } /*}}}*/
|
---|
743 | }
|
---|
744 | _printf0_("Done aggregating time mean histogram:\n");
|
---|
745 | IssmComm::SetComm(ISSM_MPI_COMM_WORLD);
|
---|
746 |
|
---|
747 | /*Free allocations:*/
|
---|
748 | xDelete<char>(directory);
|
---|
749 | xDelete<char>(model);
|
---|
750 | for (int i=0;i<nfields;i++)xDelete<char>(fields[i]);
|
---|
751 | xDelete<char*>(fields);
|
---|
752 | xDelete<int>(steps);
|
---|
753 | xDelete<IssmDouble*>(maxxs);
|
---|
754 | xDelete<IssmDouble*>(minxs);
|
---|
755 | xDelete<IssmDouble*>(maxmeans);
|
---|
756 | xDelete<IssmDouble*>(minmeans);
|
---|
757 | xDelete<int>(xtype);
|
---|
758 | xDelete<int>(xsize);
|
---|
759 |
|
---|
760 | return 1;
|
---|
761 | }
|
---|
762 | /*}}}*/
|
---|
763 | int ComputeMeanVariance(Parameters* parameters,Results* results,int color, ISSM_MPI_Comm statcomm){ /*{{{*/
|
---|
764 |
|
---|
765 | int nsamples;
|
---|
766 | char* directory=NULL;
|
---|
767 | char* model=NULL;
|
---|
768 | char** fields=NULL;
|
---|
769 | int* steps=NULL;
|
---|
770 | int nsteps;
|
---|
771 | int nfields;
|
---|
772 | int range,lower_row,upper_row;
|
---|
773 | int nfilesperdirectory;
|
---|
774 |
|
---|
775 | /*intermediary:*/
|
---|
776 | IssmDouble* doublemat=NULL;
|
---|
777 | int doublematsize;
|
---|
778 | IssmDouble scalar;
|
---|
779 |
|
---|
780 | /*computation of average and variance itself:*/
|
---|
781 | IssmDouble* x = NULL;
|
---|
782 | IssmDouble* x2 = NULL;
|
---|
783 | IssmDouble** xs = NULL;
|
---|
784 | IssmDouble** xs2 = NULL;
|
---|
785 | int* xtype=NULL;
|
---|
786 | int* xsize=NULL;
|
---|
787 |
|
---|
788 | IssmDouble** meanx=NULL;
|
---|
789 | IssmDouble** meanx2=NULL;
|
---|
790 | int* meantype=NULL;
|
---|
791 | int* meansize=NULL;
|
---|
792 |
|
---|
793 | /*only work on the statistical communicator: */
|
---|
794 | if (color==MPI_UNDEFINED)return 0;
|
---|
795 |
|
---|
796 | /*Retrieve parameters:*/
|
---|
797 | parameters->FindParam(&nfilesperdirectory,QmuNfilesPerDirectoryEnum);
|
---|
798 | parameters->FindParam(&nsamples,QmuNsampleEnum);
|
---|
799 | parameters->FindParam(&directory,DirectoryNameEnum);
|
---|
800 | parameters->FindParam(&model,InputFileNameEnum);
|
---|
801 | parameters->FindParam(&fields,&nfields,FieldsEnum);
|
---|
802 | parameters->FindParam(&steps,&nsteps,StepsEnum);
|
---|
803 |
|
---|
804 | /*Get rank from the stat comm communicator:*/
|
---|
805 | IssmComm::SetComm(statcomm);
|
---|
806 | int my_rank=IssmComm::GetRank();
|
---|
807 |
|
---|
808 | /*Open files and read them complelety, in a distributed way:*/
|
---|
809 | range=DetermineLocalSize(nsamples,IssmComm::GetComm());
|
---|
810 | GetOwnershipBoundariesFromRange(&lower_row,&upper_row,range,IssmComm::GetComm());
|
---|
811 |
|
---|
812 | /*Initialize arrays:*/
|
---|
813 | xs=xNew<IssmDouble*>(nfields*nsteps);
|
---|
814 | xs2=xNew<IssmDouble*>(nfields*nsteps);
|
---|
815 | xtype=xNew<int>(nfields*nsteps);
|
---|
816 | xsize=xNew<int>(nfields*nsteps);
|
---|
817 |
|
---|
818 | meantype=xNew<int>(nfields);
|
---|
819 | meansize=xNew<int>(nfields);
|
---|
820 | meanx=xNew<IssmDouble*>(nfields);
|
---|
821 | meanx2=xNew<IssmDouble*>(nfields);
|
---|
822 |
|
---|
823 | /*Start opening files:*/
|
---|
824 | for (int i=(lower_row+1);i<=upper_row;i++){
|
---|
825 | _printf0_("reading file #: " << i << "\n");
|
---|
826 | char file[1000];
|
---|
827 | long int length;
|
---|
828 | char* buffer=NULL;
|
---|
829 |
|
---|
830 | /*string:*/
|
---|
831 | sprintf(file,"%s/%i/%s.outbin.%i",directory,my_rank+1,model,i);
|
---|
832 |
|
---|
833 | /*open file: */
|
---|
834 | _printf0_(" opening file: " << file << "\n");
|
---|
835 | FILE* fid=fopen(file,"rb");
|
---|
836 | if(fid==NULL) _error_(" could not open file: " << file << "\n");
|
---|
837 |
|
---|
838 | /*figure out size of file, and read the whole thing:*/
|
---|
839 | _printf0_(" reading file:\n");
|
---|
840 | fseek (fid, 0, SEEK_END);
|
---|
841 | length = ftell (fid);
|
---|
842 | fseek (fid, 0, SEEK_SET);
|
---|
843 | buffer = xNew<char>(length);
|
---|
844 | fread (buffer, sizeof(char), length, fid);
|
---|
845 |
|
---|
846 | /*close file:*/
|
---|
847 | fclose (fid);
|
---|
848 |
|
---|
849 | /*create a memory stream with this buffer:*/
|
---|
850 | _printf0_(" processing file:\n");
|
---|
851 | fid=fmemopen(buffer, length, "rb");
|
---|
852 |
|
---|
853 | /*start reading data from the buffer directly:*/
|
---|
854 | for (int f=0;f<nfields;f++){
|
---|
855 | char* field=fields[f];
|
---|
856 | fseek(fid,0,SEEK_SET);
|
---|
857 | for (int j=0;j<nsteps;j++){
|
---|
858 | int counter=f*nsteps+j;
|
---|
859 | xtype[counter]=readdata(&doublemat, &doublematsize, &scalar, fid,field,steps[j]);
|
---|
860 | if(i==(lower_row+1)){
|
---|
861 | if(xtype[counter]==1){
|
---|
862 | xs[counter]=xNew<IssmDouble>(1);
|
---|
863 | xs2[counter]=xNew<IssmDouble>(1);
|
---|
864 | *xs[counter]=scalar;
|
---|
865 | *xs2[counter]=pow(scalar,2.0);
|
---|
866 | xsize[counter]=1;
|
---|
867 | }
|
---|
868 | else if (xtype[counter]==3){
|
---|
869 | IssmDouble* doublemat2=xNew<IssmDouble>(doublematsize);
|
---|
870 | for(int k=0;k<doublematsize;k++)doublemat2[k]=pow(doublemat[k],2.0);
|
---|
871 | xs[counter]=doublemat;
|
---|
872 | xs2[counter]=doublemat2;
|
---|
873 | xsize[counter]=doublematsize;
|
---|
874 | }
|
---|
875 | else _error_("cannot carry out statistics on type " << xtype[counter]);
|
---|
876 | }
|
---|
877 | else{
|
---|
878 | if(xtype[counter]==1){
|
---|
879 | *xs[counter]+=scalar;
|
---|
880 | *xs2[counter]+=pow(scalar,2.0);
|
---|
881 | }
|
---|
882 | else if (xtype[counter]==3){
|
---|
883 | IssmDouble* newdoublemat=xs[counter];
|
---|
884 | IssmDouble* newdoublemat2=xs2[counter];
|
---|
885 | for(int k=0;k<doublematsize;k++){
|
---|
886 | newdoublemat[k]+=doublemat[k];
|
---|
887 | newdoublemat2[k]+=pow(doublemat[k],2.0);
|
---|
888 | }
|
---|
889 | xs[counter]=newdoublemat;
|
---|
890 | xs2[counter]=newdoublemat2;
|
---|
891 | }
|
---|
892 | else _error_("cannot carry out statistics on type " << xtype[counter]);
|
---|
893 | }
|
---|
894 | }
|
---|
895 | }
|
---|
896 |
|
---|
897 | /*Deal with time mean: */
|
---|
898 | for (int f=0;f<nfields;f++){
|
---|
899 | char* field=fields[f];
|
---|
900 | fseek(fid,0,SEEK_SET);
|
---|
901 | meantype[f]=readdata(&doublemat, &doublematsize, &scalar, fid,field,steps[0]);
|
---|
902 | if(i==(lower_row+1)){
|
---|
903 | if(meantype[f]==1){
|
---|
904 | meanx[f]=xNewZeroInit<IssmDouble>(1);
|
---|
905 | meanx2[f]=xNewZeroInit<IssmDouble>(1);
|
---|
906 | meansize[f]=1;
|
---|
907 | }
|
---|
908 | else{
|
---|
909 | meanx[f]=xNewZeroInit<IssmDouble>(doublematsize);
|
---|
910 | meanx2[f]=xNewZeroInit<IssmDouble>(doublematsize);
|
---|
911 | meansize[f]=doublematsize;
|
---|
912 | }
|
---|
913 | }
|
---|
914 | fseek(fid,0,SEEK_SET);
|
---|
915 | if(meantype[f]==1){
|
---|
916 | IssmDouble sc=0;
|
---|
917 | IssmDouble sc2=0;
|
---|
918 | for(int j=0;j<nsteps;j++){
|
---|
919 | readdata(&doublemat, &doublematsize, &scalar, fid,field,steps[j]);
|
---|
920 | sc+=scalar/nsteps;
|
---|
921 | }
|
---|
922 | sc2+=pow(sc,2.0);
|
---|
923 | *meanx[f]+=sc;
|
---|
924 | *meanx2[f]+=sc2;
|
---|
925 | }
|
---|
926 | else{
|
---|
927 | IssmDouble* sc=meanx[f];
|
---|
928 | IssmDouble* sc2=meanx2[f];
|
---|
929 | IssmDouble* timemean=xNewZeroInit<IssmDouble>(doublematsize);
|
---|
930 | IssmDouble* timemean2=xNewZeroInit<IssmDouble>(doublematsize);
|
---|
931 |
|
---|
932 | for(int j=0;j<nsteps;j++){
|
---|
933 | readdata(&doublemat, &doublematsize, &scalar, fid,field,steps[j]);
|
---|
934 | for (int k=0;k<doublematsize;k++){
|
---|
935 | timemean[k]+=doublemat[k]/nsteps;
|
---|
936 | }
|
---|
937 | }
|
---|
938 | for (int k=0;k<doublematsize;k++){
|
---|
939 | timemean2[k]=pow(timemean[k],2.0);
|
---|
940 | }
|
---|
941 | for (int k=0;k<doublematsize;k++){
|
---|
942 | sc[k]+=timemean[k];
|
---|
943 | sc2[k]+=timemean2[k];
|
---|
944 | }
|
---|
945 |
|
---|
946 | }
|
---|
947 |
|
---|
948 | }
|
---|
949 | fclose(fid);
|
---|
950 |
|
---|
951 | /*delete buffer:*/
|
---|
952 | xDelete<char>(buffer);
|
---|
953 | }
|
---|
954 | ISSM_MPI_Barrier(IssmComm::GetComm());
|
---|
955 | _printf0_("Done reading files, now computing mean and variance.\n");
|
---|
956 |
|
---|
957 | /*We have agregated x and x^2 across the cluster, now gather across the cluster onto
|
---|
958 | *cpu0 and then compute statistics:*/
|
---|
959 | for (int f=0;f<nfields;f++){
|
---|
960 | int counter0=f*nsteps+0;
|
---|
961 | if (xtype[counter0]==1){ /*deal with scalars {{{*/
|
---|
962 | IssmDouble mean,stddev;
|
---|
963 | for (int j=0;j<nsteps;j++){
|
---|
964 | int counter=f*nsteps+j;
|
---|
965 |
|
---|
966 | /*we are broadcasting doubles:*/
|
---|
967 | IssmDouble scalar=*xs[counter];
|
---|
968 | IssmDouble scalar2=*xs2[counter];
|
---|
969 | IssmDouble sumscalar;
|
---|
970 | IssmDouble sumscalar2;
|
---|
971 |
|
---|
972 | ISSM_MPI_Reduce(&scalar,&sumscalar,1,ISSM_MPI_PDOUBLE,ISSM_MPI_SUM,0,IssmComm::GetComm());
|
---|
973 | ISSM_MPI_Reduce(&scalar2,&sumscalar2,1,ISSM_MPI_PDOUBLE,ISSM_MPI_SUM,0,IssmComm::GetComm());
|
---|
974 | /*Build average and standard deviation. For standard deviation, use the
|
---|
975 | *following formula: sigma^2=E(x^2)-mu^2:*/
|
---|
976 | mean=sumscalar/nsamples;
|
---|
977 | stddev=sqrt(sumscalar2/nsamples-pow(mean,2.0));
|
---|
978 |
|
---|
979 | /*add to results:*/
|
---|
980 | if(my_rank==0){
|
---|
981 | char fieldname[1000];
|
---|
982 |
|
---|
983 | sprintf(fieldname,"%s%s",fields[f],"Mean");
|
---|
984 | results->AddResult(new GenericExternalResult<IssmDouble>(results->Size()+1,fieldname,mean,j+1,0));
|
---|
985 | sprintf(fieldname,"%s%s",fields[f],"Stddev");
|
---|
986 | results->AddResult(new GenericExternalResult<IssmDouble>(results->Size()+1,fieldname,stddev,j+1,0));
|
---|
987 | }
|
---|
988 |
|
---|
989 | }
|
---|
990 | } /*}}}*/
|
---|
991 | else{ /*deal with arrays:{{{*/
|
---|
992 |
|
---|
993 | int size=xsize[counter0];
|
---|
994 |
|
---|
995 | IssmDouble* mean=xNew<IssmDouble>(size);
|
---|
996 | IssmDouble* stddev=xNew<IssmDouble>(size);
|
---|
997 |
|
---|
998 | for (int j=0;j<nsteps;j++){
|
---|
999 | int counter=f*nsteps+j;
|
---|
1000 |
|
---|
1001 | /*we are broadcasting double arrays:*/
|
---|
1002 | x=xs[counter];
|
---|
1003 | x2=xs2[counter];
|
---|
1004 |
|
---|
1005 | IssmDouble* sumx=xNew<IssmDouble>(size);
|
---|
1006 | IssmDouble* sumx2=xNew<IssmDouble>(size);
|
---|
1007 |
|
---|
1008 | ISSM_MPI_Reduce(x,sumx,size,ISSM_MPI_PDOUBLE,ISSM_MPI_SUM,0,IssmComm::GetComm());
|
---|
1009 | ISSM_MPI_Reduce(x2,sumx2,size,ISSM_MPI_PDOUBLE,ISSM_MPI_SUM,0,IssmComm::GetComm());
|
---|
1010 |
|
---|
1011 | /*Build average and standard deviation. For standard deviation, use the
|
---|
1012 | *following formula: sigma^2=E(x^2)-mu^2:*/
|
---|
1013 | for (int k=0;k<size;k++){
|
---|
1014 | mean[k]=sumx[k]/nsamples;
|
---|
1015 | stddev[k]=sqrt(sumx2[k]/nsamples-pow(mean[k],2.0));
|
---|
1016 | }
|
---|
1017 |
|
---|
1018 | /*add to results:*/
|
---|
1019 | if(my_rank==0){
|
---|
1020 | char fieldname[1000];
|
---|
1021 |
|
---|
1022 | sprintf(fieldname,"%s%s",fields[f],"Mean");
|
---|
1023 | results->AddResult(new GenericExternalResult<IssmPDouble*>(results->Size()+1,fieldname,mean,size,1,j+1,0));
|
---|
1024 | sprintf(fieldname,"%s%s",fields[f],"Stddev");
|
---|
1025 | results->AddResult(new GenericExternalResult<IssmPDouble*>(results->Size()+1,fieldname,stddev,size,1,j+1,0));
|
---|
1026 | }
|
---|
1027 | }
|
---|
1028 | } /*}}}*/
|
---|
1029 | }
|
---|
1030 | /*Do the same but for the time mean:*/
|
---|
1031 | for (int f=0;f<nfields;f++){
|
---|
1032 | if (meantype[f]==1){ /*deal with scalars {{{*/
|
---|
1033 | IssmDouble mean,stddev;
|
---|
1034 |
|
---|
1035 | /*we are broadcasting doubles:*/
|
---|
1036 | IssmDouble scalar=*meanx[f];
|
---|
1037 | IssmDouble scalar2=*meanx2[f];
|
---|
1038 | IssmDouble sumscalar;
|
---|
1039 | IssmDouble sumscalar2;
|
---|
1040 |
|
---|
1041 | ISSM_MPI_Reduce(&scalar,&sumscalar,1,ISSM_MPI_PDOUBLE,ISSM_MPI_SUM,0,IssmComm::GetComm());
|
---|
1042 | ISSM_MPI_Reduce(&scalar2,&sumscalar2,1,ISSM_MPI_PDOUBLE,ISSM_MPI_SUM,0,IssmComm::GetComm());
|
---|
1043 | /*Build average and standard deviation. For standard deviation, use the
|
---|
1044 | *following formula: sigma^2=E(x^2)-mu^2:*/
|
---|
1045 | mean=sumscalar/nsamples;
|
---|
1046 | stddev=sqrt(sumscalar2/nsamples-pow(mean,2.0));
|
---|
1047 |
|
---|
1048 | /*add to results:*/
|
---|
1049 | if(my_rank==0){
|
---|
1050 | char fieldname[1000];
|
---|
1051 |
|
---|
1052 | sprintf(fieldname,"%s%s",fields[f],"TimeMean");
|
---|
1053 | results->AddResult(new GenericExternalResult<IssmDouble>(results->Size()+1,fieldname,mean,steps[0],0));
|
---|
1054 | sprintf(fieldname,"%s%s",fields[f],"TimeStddev");
|
---|
1055 | results->AddResult(new GenericExternalResult<IssmDouble>(results->Size()+1,fieldname,stddev,steps[0],0));
|
---|
1056 | }
|
---|
1057 | } /*}}}*/
|
---|
1058 | else{ /*deal with arrays:{{{*/
|
---|
1059 |
|
---|
1060 | int size=meansize[f];
|
---|
1061 | IssmDouble* mean=xNew<IssmDouble>(size);
|
---|
1062 | IssmDouble* stddev=xNew<IssmDouble>(size);
|
---|
1063 |
|
---|
1064 | /*we are broadcasting double arrays:*/
|
---|
1065 | x=meanx[f];
|
---|
1066 | x2=meanx2[f];
|
---|
1067 |
|
---|
1068 | IssmDouble* sumx=xNew<IssmDouble>(size);
|
---|
1069 | IssmDouble* sumx2=xNew<IssmDouble>(size);
|
---|
1070 |
|
---|
1071 | ISSM_MPI_Reduce(x,sumx,size,ISSM_MPI_PDOUBLE,ISSM_MPI_SUM,0,IssmComm::GetComm());
|
---|
1072 | ISSM_MPI_Reduce(x2,sumx2,size,ISSM_MPI_PDOUBLE,ISSM_MPI_SUM,0,IssmComm::GetComm());
|
---|
1073 |
|
---|
1074 | /*Build average and standard deviation. For standard deviation, use the
|
---|
1075 | *following formula: sigma^2=E(x^2)-mu^2:*/
|
---|
1076 | for (int k=0;k<size;k++){
|
---|
1077 | mean[k]=sumx[k]/nsamples;
|
---|
1078 | stddev[k]=sqrt(sumx2[k]/nsamples-pow(mean[k],2.0));
|
---|
1079 | }
|
---|
1080 |
|
---|
1081 | /*add to results:*/
|
---|
1082 | if(my_rank==0){
|
---|
1083 | char fieldname[1000];
|
---|
1084 |
|
---|
1085 | sprintf(fieldname,"%s%s",fields[f],"TimeMean");
|
---|
1086 | results->AddResult(new GenericExternalResult<IssmPDouble*>(results->Size()+1,fieldname,mean,size,1,steps[0],0));
|
---|
1087 | sprintf(fieldname,"%s%s",fields[f],"TimeStddev");
|
---|
1088 | results->AddResult(new GenericExternalResult<IssmPDouble*>(results->Size()+1,fieldname,stddev,size,1,steps[0],0));
|
---|
1089 | }
|
---|
1090 | } /*}}}*/
|
---|
1091 | }
|
---|
1092 |
|
---|
1093 | _printf0_("Done with MeanVariance:\n");
|
---|
1094 | IssmComm::SetComm(ISSM_MPI_COMM_WORLD);
|
---|
1095 |
|
---|
1096 | return 1;
|
---|
1097 | } /*}}}*/
|
---|
1098 | int ComputeSampleSeries(Parameters* parameters,Results* results,int color, ISSM_MPI_Comm statcomm){ /*{{{*/
|
---|
1099 |
|
---|
1100 | int nsamples;
|
---|
1101 | char* directory=NULL;
|
---|
1102 | char* model=NULL;
|
---|
1103 | char** fields=NULL;
|
---|
1104 | int* steps=NULL;
|
---|
1105 | int nsteps;
|
---|
1106 | int nfields;
|
---|
1107 | int range,lower_row,upper_row;
|
---|
1108 | int nfilesperdirectory;
|
---|
1109 | int* indices=NULL;
|
---|
1110 | int nindices;
|
---|
1111 |
|
---|
1112 | /*intermediary:*/
|
---|
1113 | IssmDouble* doublemat=NULL;
|
---|
1114 | int doublematsize;
|
---|
1115 | IssmDouble scalar;
|
---|
1116 |
|
---|
1117 | /*computation of average and variance itself:*/
|
---|
1118 | IssmDouble* x = NULL;
|
---|
1119 | IssmDouble* allx=NULL;
|
---|
1120 | IssmDouble** xs = NULL;
|
---|
1121 | int* xtype=NULL;
|
---|
1122 | int* xsize=NULL;
|
---|
1123 |
|
---|
1124 | /*only work on the statistical communicator: */
|
---|
1125 | if (color==MPI_UNDEFINED)return 0;
|
---|
1126 |
|
---|
1127 | /*Retrieve parameters:*/
|
---|
1128 | parameters->FindParam(&nsamples,QmuNsampleEnum);
|
---|
1129 | parameters->FindParam(&directory,DirectoryNameEnum);
|
---|
1130 | parameters->FindParam(&model,InputFileNameEnum);
|
---|
1131 | parameters->FindParam(&fields,&nfields,FieldsEnum);
|
---|
1132 | parameters->FindParam(&steps,&nsteps,StepsEnum);
|
---|
1133 | parameters->FindParam(&indices,&nindices,IndicesEnum);
|
---|
1134 |
|
---|
1135 | /*Get rank from the stat comm communicator:*/
|
---|
1136 | IssmComm::SetComm(statcomm);
|
---|
1137 | int my_rank=IssmComm::GetRank();
|
---|
1138 |
|
---|
1139 | /*Open files and read them complelety, in a distributed way:*/
|
---|
1140 | range=DetermineLocalSize(nsamples,IssmComm::GetComm());
|
---|
1141 | GetOwnershipBoundariesFromRange(&lower_row,&upper_row,range,IssmComm::GetComm());
|
---|
1142 |
|
---|
1143 | /*Initialize arrays:*/
|
---|
1144 | xs=xNew<IssmDouble*>(nfields*nsteps);
|
---|
1145 | xtype=xNew<int>(nfields*nsteps);
|
---|
1146 | xsize=xNew<int>(nfields*nsteps);
|
---|
1147 |
|
---|
1148 | /*Start opening files:*/
|
---|
1149 | for (int i=(lower_row+1);i<=upper_row;i++){
|
---|
1150 | _printf0_("reading file #: " << i << "\n");
|
---|
1151 | char file[1000];
|
---|
1152 | long int length;
|
---|
1153 | char* buffer=NULL;
|
---|
1154 |
|
---|
1155 | /*string:*/
|
---|
1156 | sprintf(file,"%s/%i/%s.outbin.%i",directory,my_rank+1,model,i);
|
---|
1157 |
|
---|
1158 | /*open file: */
|
---|
1159 | _printf0_(" opening file:\n");
|
---|
1160 | FILE* fid=fopen(file,"rb");
|
---|
1161 |
|
---|
1162 | /*figure out size of file, and read the whole thing:*/
|
---|
1163 | _printf0_(" reading file:\n");
|
---|
1164 | fseek (fid, 0, SEEK_END);
|
---|
1165 | length = ftell (fid);
|
---|
1166 | fseek (fid, 0, SEEK_SET);
|
---|
1167 | buffer = xNew<char>(length);
|
---|
1168 | fread (buffer, sizeof(char), length, fid);
|
---|
1169 |
|
---|
1170 | /*close file:*/
|
---|
1171 | fclose (fid);
|
---|
1172 |
|
---|
1173 | /*create a memory stream with this buffer:*/
|
---|
1174 | _printf0_(" processing file:\n");
|
---|
1175 | fid=fmemopen(buffer, length, "rb");
|
---|
1176 |
|
---|
1177 | /*start reading data from the buffer directly:*/
|
---|
1178 | for (int f=0;f<nfields;f++){
|
---|
1179 | fseek(fid,0,SEEK_SET);
|
---|
1180 | char* field=fields[f];
|
---|
1181 | for (int j=0;j<nsteps;j++){
|
---|
1182 | int counter=f*nsteps+j;
|
---|
1183 | xtype[counter]=readdata(&doublemat, &doublematsize, &scalar, fid,field,steps[j]);
|
---|
1184 | if(i==(lower_row+1)){
|
---|
1185 | if(xtype[counter]==1){
|
---|
1186 | x=xNew<IssmDouble>(range);
|
---|
1187 | x[0]=scalar;
|
---|
1188 | xs[counter]=x;
|
---|
1189 | xsize[counter]=range;
|
---|
1190 | }
|
---|
1191 | else if (xtype[counter]==3){
|
---|
1192 | x=xNew<IssmDouble>(nindices*range);
|
---|
1193 | for(int k=0;k<nindices;k++)x[(i-(lower_row+1))*nindices+k]=doublemat[indices[k]-1];
|
---|
1194 | xs[counter]=x;
|
---|
1195 | xsize[counter]=range*nindices;
|
---|
1196 | }
|
---|
1197 | else _error_("cannot carry out statistics on type " << xtype[counter]);
|
---|
1198 | }
|
---|
1199 | else{
|
---|
1200 | if(xtype[counter]==1){
|
---|
1201 | x=xs[counter];
|
---|
1202 | x[i-(lower_row+1)]=scalar;
|
---|
1203 | xs[counter]=x;
|
---|
1204 | }
|
---|
1205 | else if (xtype[counter]==3){
|
---|
1206 | x=xs[counter];
|
---|
1207 | for(int k=0;k<nindices;k++)x[(i-(lower_row+1))*nindices+k]=doublemat[indices[k]-1];
|
---|
1208 | xs[counter]=x;
|
---|
1209 | }
|
---|
1210 | else _error_("cannot carry out statistics on type " << xtype[counter]);
|
---|
1211 | }
|
---|
1212 | }
|
---|
1213 | }
|
---|
1214 | fclose(fid);
|
---|
1215 |
|
---|
1216 | /*delete buffer:*/
|
---|
1217 | xDelete<char>(buffer);
|
---|
1218 | }
|
---|
1219 | ISSM_MPI_Barrier(IssmComm::GetComm());
|
---|
1220 | _printf0_("Done reading files, now assembling time series.\n");
|
---|
1221 |
|
---|
1222 | for (int f=0;f<nfields;f++){
|
---|
1223 | for (int j=0;j<nsteps;j++){
|
---|
1224 | int counter=f*nsteps+j;
|
---|
1225 | if (xtype[counter]==1){
|
---|
1226 | /*we are broadcasting range times doubles:*/
|
---|
1227 | x=xs[counter];
|
---|
1228 | allx=xNew<IssmDouble>(nsamples);
|
---|
1229 | MPI_Gather(x, range, ISSM_MPI_PDOUBLE,allx, range, ISSM_MPI_PDOUBLE, 0, IssmComm::GetComm());
|
---|
1230 | /*add to results:*/
|
---|
1231 | if(my_rank==0){
|
---|
1232 | char fieldname[1000];
|
---|
1233 |
|
---|
1234 | sprintf(fieldname,"%s%s",fields[f],"Samples");
|
---|
1235 | results->AddResult(new GenericExternalResult<IssmPDouble*>(results->Size()+1,fieldname,allx,nsamples,1,j+1,0));
|
---|
1236 | }
|
---|
1237 | }
|
---|
1238 | else{
|
---|
1239 | /*we are broadcasting double arrays:*/
|
---|
1240 | x=xs[counter];
|
---|
1241 | allx=xNew<IssmDouble>(nsamples*nindices);
|
---|
1242 |
|
---|
1243 | MPI_Gather(x, range*nindices, ISSM_MPI_PDOUBLE,allx, range*nindices, ISSM_MPI_PDOUBLE, 0, IssmComm::GetComm());
|
---|
1244 |
|
---|
1245 | /*add to results:*/
|
---|
1246 | if(my_rank==0){
|
---|
1247 | char fieldname[1000];
|
---|
1248 | sprintf(fieldname,"%s%s",fields[f],"Samples");
|
---|
1249 | results->AddResult(new GenericExternalResult<IssmPDouble*>(results->Size()+1,fieldname,allx,nsamples,nindices,j+1,0));
|
---|
1250 | }
|
---|
1251 | }
|
---|
1252 | }
|
---|
1253 | }
|
---|
1254 | _printf0_("Done with SampleSeries:\n");
|
---|
1255 | IssmComm::SetComm(ISSM_MPI_COMM_WORLD);
|
---|
1256 |
|
---|
1257 | return 1;
|
---|
1258 | } /*}}}*/
|
---|
1259 | int OutputStatistics(Parameters* parameters,Results* results,int color,ISSM_MPI_Comm statcomm){ /*{{{*/
|
---|
1260 |
|
---|
1261 | char outputfilename[1000];
|
---|
1262 | char* directory=NULL;
|
---|
1263 | char* model=NULL;
|
---|
1264 | char* method=NULL;
|
---|
1265 | int nsamples;
|
---|
1266 | int* steps=NULL;
|
---|
1267 | int nsteps;
|
---|
1268 |
|
---|
1269 | /*only work on the statistical communicator: */
|
---|
1270 | if (color==MPI_UNDEFINED)return 0;
|
---|
1271 |
|
---|
1272 | FemModel* femmodel=new FemModel();
|
---|
1273 |
|
---|
1274 | /*Some parameters that will allow us to use the OutputResultsx module:*/
|
---|
1275 | parameters->AddObject(new BoolParam(QmuIsdakotaEnum,false));
|
---|
1276 | parameters->AddObject(new BoolParam(SettingsIoGatherEnum,true));
|
---|
1277 |
|
---|
1278 | parameters->FindParam(&directory,DirectoryNameEnum);
|
---|
1279 | parameters->FindParam(&model,InputFileNameEnum);
|
---|
1280 | parameters->FindParam(&nsamples,QmuNsampleEnum);
|
---|
1281 | parameters->FindParam(&steps,&nsteps,StepsEnum);
|
---|
1282 |
|
---|
1283 | sprintf(outputfilename,"%s/%s.stats",directory,model);
|
---|
1284 | parameters->AddObject(new StringParam(OutputFileNameEnum,outputfilename));
|
---|
1285 |
|
---|
1286 | /*Call OutputResults module:*/
|
---|
1287 | femmodel->parameters=parameters;
|
---|
1288 | femmodel->results=results;
|
---|
1289 |
|
---|
1290 | OutputResultsx(femmodel);
|
---|
1291 |
|
---|
1292 | return 1;
|
---|
1293 | } /*}}}*/
|
---|
1294 | int readdata(IssmDouble** pdoublemat, int* pdoublematsize, IssmDouble* pdouble, FILE* fid,char* field,int step){ /*{{{*/
|
---|
1295 |
|
---|
1296 | int length;
|
---|
1297 | char fieldname[1000];
|
---|
1298 | int fieldname_size;
|
---|
1299 | IssmDouble rtime;
|
---|
1300 | int rstep;
|
---|
1301 | int M,N;
|
---|
1302 |
|
---|
1303 | //fields that we retrive:
|
---|
1304 | IssmDouble dfield;
|
---|
1305 | char* sfield = NULL;
|
---|
1306 | IssmDouble* dmatfield = NULL;
|
---|
1307 | int* imatfield = NULL;
|
---|
1308 |
|
---|
1309 | //type of the returned field:
|
---|
1310 | int type;
|
---|
1311 | int found=0;
|
---|
1312 |
|
---|
1313 | while(1){
|
---|
1314 |
|
---|
1315 | size_t ret_code = fread(&fieldname_size, sizeof(int), 1, fid);
|
---|
1316 | if(ret_code != 1) break; //we are done.
|
---|
1317 |
|
---|
1318 | fread(fieldname, sizeof(char), fieldname_size, fid);
|
---|
1319 | //_printf0_("fieldname: " << fieldname << "\n");
|
---|
1320 |
|
---|
1321 | fread(&rtime, sizeof(IssmDouble), 1, fid);
|
---|
1322 | fread(&rstep, sizeof(int), 1, fid);
|
---|
1323 |
|
---|
1324 | //check on field:
|
---|
1325 | if ((step==rstep) && (strcmp(field,fieldname)==0)){
|
---|
1326 |
|
---|
1327 | //ok, go read the result really:
|
---|
1328 | fread(&type,sizeof(int),1,fid);
|
---|
1329 | fread(&M,sizeof(int),1,fid);
|
---|
1330 | if (type==1){
|
---|
1331 | fread(&dfield,sizeof(IssmDouble),1,fid);
|
---|
1332 | }
|
---|
1333 | else if (type==2){
|
---|
1334 | fread(&M,sizeof(int),1,fid);
|
---|
1335 | sfield=xNew<char>(M);
|
---|
1336 | fread(sfield,sizeof(char),M,fid);
|
---|
1337 | }
|
---|
1338 | else if (type==3){
|
---|
1339 | fread(&N,sizeof(int),1,fid);
|
---|
1340 | dmatfield=xNew<IssmDouble>(M*N);
|
---|
1341 | fread(dmatfield,sizeof(IssmDouble),M*N,fid);
|
---|
1342 | }
|
---|
1343 | else if (type==4){
|
---|
1344 | fread(&N,sizeof(int),1,fid);
|
---|
1345 | imatfield=xNew<int>(M*N);
|
---|
1346 | fread(imatfield,sizeof(int),M*N,fid);
|
---|
1347 | }
|
---|
1348 | else _error_("cannot read data of type " << type << "\n");
|
---|
1349 | found=1;
|
---|
1350 | break;
|
---|
1351 | }
|
---|
1352 | else{
|
---|
1353 | //just skim to next results.
|
---|
1354 | fread(&type,sizeof(int),1,fid);
|
---|
1355 | fread(&M,sizeof(int),1,fid);
|
---|
1356 | if (type==1){
|
---|
1357 | fseek(fid,sizeof(IssmDouble),SEEK_CUR);
|
---|
1358 | }
|
---|
1359 | else if(type==2){
|
---|
1360 | fseek(fid,M*sizeof(char),SEEK_CUR);
|
---|
1361 | }
|
---|
1362 | else if(type==3){
|
---|
1363 | fread(&N,sizeof(int),1,fid);
|
---|
1364 | fseek(fid,M*N*sizeof(IssmDouble),SEEK_CUR);
|
---|
1365 | }
|
---|
1366 | else if(type==4){
|
---|
1367 | fread(&N,sizeof(int),1,fid);
|
---|
1368 | fseek(fid,M*N*sizeof(int),SEEK_CUR);
|
---|
1369 | }
|
---|
1370 | else _error_("cannot read data of type " << type << "\n");
|
---|
1371 | }
|
---|
1372 | }
|
---|
1373 | if(found==0)_error_("cound not find " << field << " at step " << step << "\n");
|
---|
1374 |
|
---|
1375 | /*assign output pointers:*/
|
---|
1376 | *pdoublemat=dmatfield;
|
---|
1377 | *pdoublematsize=M*N;
|
---|
1378 | *pdouble=dfield;
|
---|
1379 |
|
---|
1380 | /*return:*/
|
---|
1381 | return type;
|
---|
1382 |
|
---|
1383 | }
|
---|
1384 | /*}}}*/
|
---|
1385 | bool DakotaDirStructure(int argc,char** argv){ /*{{{*/
|
---|
1386 |
|
---|
1387 | char* input_file;
|
---|
1388 | FILE* fid;
|
---|
1389 | IoModel* iomodel=NULL;
|
---|
1390 | int check;
|
---|
1391 |
|
---|
1392 | //qmu statistics
|
---|
1393 | bool statistics = false;
|
---|
1394 | int numdirectories = 0;
|
---|
1395 |
|
---|
1396 | /*First things first, set the communicator as a global variable: */
|
---|
1397 | IssmComm::SetComm(MPI_COMM_WORLD);
|
---|
1398 |
|
---|
1399 | /*Barrier:*/
|
---|
1400 | ISSM_MPI_Barrier(IssmComm::GetComm());
|
---|
1401 | _printf0_("Preparing directory structure for model outputs:" << "\n");
|
---|
1402 |
|
---|
1403 | //open model input file for reading
|
---|
1404 | input_file=xNew<char>((strlen(argv[2])+strlen(argv[3])+strlen(".bin")+2));
|
---|
1405 | sprintf(input_file,"%s/%s%s",argv[2],argv[3],".bin");
|
---|
1406 | fid=fopen(input_file,"rb");
|
---|
1407 | if (fid==NULL) Cerr << "dirstructure error message: could not open model " << input_file << " to retrieve qmu statistics parameters" << std::endl;
|
---|
1408 |
|
---|
1409 | //initialize IoModel, but light version, we just need it to fetch one constant:
|
---|
1410 | iomodel=new IoModel();
|
---|
1411 | iomodel->fid=fid;
|
---|
1412 | iomodel->FetchConstants();
|
---|
1413 |
|
---|
1414 | //early return if statistics not requested:
|
---|
1415 | iomodel->FindConstant(&statistics,"md.qmu.statistics");
|
---|
1416 | if(!statistics){
|
---|
1417 | delete iomodel;
|
---|
1418 | xDelete<char>(input_file);
|
---|
1419 | fclose(fid);
|
---|
1420 | return false; //important return value!
|
---|
1421 | }
|
---|
1422 |
|
---|
1423 | iomodel->FindConstant(&numdirectories,"md.qmu.statistics.ndirectories");
|
---|
1424 |
|
---|
1425 | /*Ok, we have everything we need to create the directory structure:*/
|
---|
1426 | if(IssmComm::GetRank()==0){
|
---|
1427 | for (int i=0;i<numdirectories;i++){
|
---|
1428 | char directory[1000];
|
---|
1429 | sprintf(directory,"./%i",i+1);
|
---|
1430 |
|
---|
1431 | check = mkdir(directory,ACCESSPERMS);
|
---|
1432 | if (check) _error_("dirstructure error message: could not create directory " << directory << "\n");
|
---|
1433 | }
|
---|
1434 | }
|
---|
1435 |
|
---|
1436 | /*Delete resources:*/
|
---|
1437 | delete iomodel;
|
---|
1438 | xDelete<char>(input_file);
|
---|
1439 |
|
---|
1440 | //close model file:
|
---|
1441 | fclose(fid);
|
---|
1442 |
|
---|
1443 | //return value:
|
---|
1444 | return true; //statistics computation on!
|
---|
1445 | } /*}}}*/
|
---|