[25596] | 1 | /*!\file: QmuStatisticsx routines
|
---|
| 2 | */
|
---|
| 3 | /*includes and prototypes:*/
|
---|
[25615] | 4 | #include <sys/stat.h>
|
---|
[25596] | 5 | #include "./QmuStatisticsx.h"
|
---|
| 6 | #include "../OutputResultsx/OutputResultsx.h"
|
---|
| 7 |
|
---|
[27268] | 8 | int DakotaStatistics(int argc,char** argv){ /*{{{*/
|
---|
[25596] | 9 |
|
---|
[27268] | 10 | /*Variables:{{{*/
|
---|
| 11 | char* input_file;
|
---|
| 12 | FILE* fid;
|
---|
| 13 | IoModel* iomodel=NULL;
|
---|
| 14 | ISSM_MPI_Comm statcomm;
|
---|
| 15 | int my_rank;
|
---|
[25596] | 16 |
|
---|
[27268] | 17 | //qmu statistics
|
---|
| 18 | bool statistics = false;
|
---|
| 19 | int numstatistics = 0;
|
---|
| 20 | int numdirectories = 0;
|
---|
| 21 | int nfilesperdirectory = 0;
|
---|
| 22 | char string[1000];
|
---|
| 23 | char* name = NULL;
|
---|
| 24 | char** fields = NULL;
|
---|
| 25 | int nfields;
|
---|
| 26 | int* steps=NULL;
|
---|
| 27 | int nsteps;
|
---|
| 28 | int nbins;
|
---|
| 29 | int* indices=NULL;
|
---|
| 30 | int nindices;
|
---|
| 31 | int nsamples;
|
---|
| 32 | int dummy;
|
---|
| 33 | char* directory=NULL;
|
---|
| 34 | char* model=NULL;
|
---|
| 35 | Results* results=NULL;
|
---|
| 36 | Parameters* parameters=NULL;
|
---|
| 37 | int color;
|
---|
| 38 | /*}}}*/
|
---|
| 39 | //First things first, set the communicator as a global variable and be sure we are all here: {{{
|
---|
| 40 | IssmComm::SetComm(MPI_COMM_WORLD);
|
---|
| 41 | my_rank=IssmComm::GetRank();
|
---|
[26468] | 42 |
|
---|
[27268] | 43 | /*Barrier:*/
|
---|
| 44 | ISSM_MPI_Barrier(IssmComm::GetComm());
|
---|
| 45 | _printf0_("Dakota Statistic Computation" << "\n");
|
---|
| 46 | /*}}}*/
|
---|
| 47 | //Open model input file for reading {{{
|
---|
| 48 | input_file=xNew<char>((strlen(argv[2])+strlen(argv[3])+strlen(".bin")+2));
|
---|
| 49 | sprintf(input_file,"%s/%s%s",argv[2],argv[3],".bin");
|
---|
| 50 | fid=fopen(input_file,"rb");
|
---|
| 51 | if (fid==NULL) Cerr << "issm_dakota_statistics error message: could not open model " << input_file << " to retrieve qmu statistics parameters" << std::endl;
|
---|
| 52 | //}}}
|
---|
| 53 | //Initialize IoModel, but light version, we'll need it to fetch constants: {{{
|
---|
| 54 | iomodel=new IoModel();
|
---|
| 55 | iomodel->fid=fid;
|
---|
| 56 | iomodel->FetchConstants();
|
---|
| 57 | /*}}}*/
|
---|
| 58 | //Early return if statistics not requested: {{{
|
---|
| 59 | iomodel->FindConstant(&statistics,"md.qmu.statistics");
|
---|
| 60 | if(!statistics){
|
---|
| 61 | delete iomodel;
|
---|
| 62 | xDelete<char>(input_file);
|
---|
| 63 | fclose(fid);
|
---|
| 64 | return 0;
|
---|
| 65 | }
|
---|
| 66 | /*}}}*/
|
---|
| 67 | //Create parameters datasets with al the qmu statistics settings we need: {{{
|
---|
[25596] | 68 |
|
---|
[27268] | 69 | /*Initialize parameters and results:*/
|
---|
| 70 | results = new Results();
|
---|
| 71 | parameters=new Parameters();
|
---|
[25596] | 72 |
|
---|
[27268] | 73 | //solution type:
|
---|
| 74 | parameters->AddObject(new IntParam(SolutionTypeEnum,StatisticsSolutionEnum));
|
---|
[25596] | 75 |
|
---|
[27268] | 76 | //root directory
|
---|
| 77 | directory=xNew<char>(strlen(argv[2])+1);
|
---|
| 78 | xMemCpy<char>(directory,argv[2],strlen(argv[2])+1);
|
---|
| 79 | parameters->AddObject(new StringParam(DirectoryNameEnum,directory));
|
---|
[25596] | 80 |
|
---|
[27268] | 81 | //model name
|
---|
| 82 | model=xNew<char>(strlen(argv[3])+1);
|
---|
| 83 | xMemCpy<char>(model,argv[3],strlen(argv[3])+1);
|
---|
| 84 | parameters->AddObject(new StringParam(InputFileNameEnum,model));
|
---|
[25596] | 85 |
|
---|
[27268] | 86 | //nsamples
|
---|
| 87 | iomodel->FindConstant(&nsamples,"md.qmu.method.params.samples");
|
---|
| 88 | parameters->AddObject(new IntParam(QmuNsampleEnum,nsamples));
|
---|
[25596] | 89 |
|
---|
[27268] | 90 | //ndirectories
|
---|
| 91 | iomodel->FindConstant(&numdirectories,"md.qmu.statistics.ndirectories");
|
---|
| 92 | parameters->AddObject(new IntParam(QmuNdirectoriesEnum,numdirectories));
|
---|
| 93 |
|
---|
| 94 | //nfiles per directory
|
---|
| 95 | iomodel->FindConstant(&nfilesperdirectory,"md.qmu.statistics.nfiles_per_directory");
|
---|
| 96 | parameters->AddObject(new IntParam(QmuNfilesPerDirectoryEnum,nfilesperdirectory));
|
---|
| 97 | /*}}}*/
|
---|
| 98 | /*Create MPI world: {{{*/
|
---|
| 99 | //At this point, we don't want to go forward any longer, we want to create an MPI
|
---|
| 100 | //communicator on which to carry out the computations:
|
---|
| 101 | if ((my_rank+1)*nfilesperdirectory>nsamples)color=MPI_UNDEFINED;
|
---|
| 102 | else color=0;
|
---|
| 103 | ISSM_MPI_Comm_split(ISSM_MPI_COMM_WORLD,color, my_rank, &statcomm);
|
---|
| 104 | /*}}}*/
|
---|
| 105 |
|
---|
| 106 | iomodel->FindConstant(&numstatistics,"md.qmu.statistics.numstatistics");
|
---|
| 107 | for (int i=1;i<=numstatistics;i++){
|
---|
[27275] | 108 | //for (int i=9;i<=9;i++){
|
---|
[27268] | 109 |
|
---|
| 110 | char* directory=NULL;
|
---|
| 111 | char* model=NULL;
|
---|
| 112 | int nsamples;
|
---|
| 113 | _printf0_("Dealing with qmu statistical computation #" << i << "\n");
|
---|
| 114 |
|
---|
| 115 | sprintf(string,"md.qmu.statistics.method(%i).name",i);
|
---|
| 116 | iomodel->FindConstant(&name,string);
|
---|
| 117 |
|
---|
| 118 | sprintf(string,"md.qmu.statistics.method(%i).fields",i);
|
---|
| 119 | iomodel->FindConstant(&fields,&nfields,string);
|
---|
| 120 | parameters->AddObject(new StringArrayParam(FieldsEnum,fields,nfields));
|
---|
| 121 |
|
---|
| 122 | sprintf(string,"md.qmu.statistics.method(%i).steps",i);
|
---|
| 123 | iomodel->FetchData(&steps,&dummy,&nsteps,string);
|
---|
| 124 | parameters->AddObject(new IntVecParam(StepsEnum,steps,nsteps));
|
---|
| 125 |
|
---|
| 126 | if (strcmp(name,"Histogram")==0){
|
---|
| 127 | /*fetch nbins: */
|
---|
| 128 | sprintf(string,"md.qmu.statistics.method(%i).nbins",i);
|
---|
| 129 | iomodel->FindConstant(&nbins,string);
|
---|
| 130 | parameters->AddObject(new IntParam(NbinsEnum,nbins));
|
---|
| 131 | ComputeHistogram(parameters,results,color,statcomm);
|
---|
[25596] | 132 | }
|
---|
[27268] | 133 | else if (strcmp(name,"SampleSeries")==0){
|
---|
| 134 | /*fetch indices: */
|
---|
| 135 | sprintf(string,"md.qmu.statistics.method(%i).indices",i);
|
---|
[27275] | 136 | iomodel->FetchData(&indices,&nindices,&dummy,string);
|
---|
[27268] | 137 | parameters->AddObject(new IntVecParam(IndicesEnum,indices,nindices));
|
---|
| 138 |
|
---|
| 139 | ComputeSampleSeries(parameters,results,color,statcomm);
|
---|
[25596] | 140 | }
|
---|
[27268] | 141 | else if (strcmp(name,"MeanVariance")==0){
|
---|
| 142 | ComputeMeanVariance(parameters,results,color,statcomm);
|
---|
| 143 | }
|
---|
| 144 | else _error_(" error creating qmu statistics methods parameters: unsupported method " << name);
|
---|
[25596] | 145 | }
|
---|
| 146 |
|
---|
[27268] | 147 | /*Delete resources:*/
|
---|
| 148 | xDelete<char>(input_file);
|
---|
| 149 | delete iomodel;
|
---|
[25596] | 150 |
|
---|
[27268] | 151 | //close model file:
|
---|
| 152 | fclose(fid);
|
---|
[25596] | 153 |
|
---|
[27268] | 154 | /*output results:*/
|
---|
| 155 | OutputStatistics(parameters,results,color,statcomm);
|
---|
| 156 |
|
---|
| 157 | /*all meet here: */
|
---|
| 158 | ISSM_MPI_Barrier(ISSM_MPI_COMM_WORLD); _printf0_("Output file.\n");
|
---|
| 159 |
|
---|
| 160 | /*Delete resources:*/
|
---|
| 161 | delete parameters;
|
---|
| 162 | delete results;
|
---|
| 163 |
|
---|
| 164 | return 1;
|
---|
| 165 | } /*}}}*/
|
---|
[25596] | 166 | int ComputeHistogram(Parameters* parameters,Results* results,int color, ISSM_MPI_Comm statcomm){ /*{{{*/
|
---|
| 167 |
|
---|
| 168 | int nsamples;
|
---|
| 169 | char* directory=NULL;
|
---|
| 170 | char* model=NULL;
|
---|
| 171 | char** fields=NULL;
|
---|
| 172 | int* steps=NULL;
|
---|
| 173 | int nsteps;
|
---|
| 174 | int nfields;
|
---|
| 175 | int nbins;
|
---|
| 176 | int range,lower_row,upper_row;
|
---|
| 177 | int nfilesperdirectory;
|
---|
[26468] | 178 |
|
---|
[25596] | 179 | /*intermediary:*/
|
---|
| 180 | IssmDouble* doublemat=NULL;
|
---|
| 181 | int doublematsize;
|
---|
| 182 | IssmDouble scalar;
|
---|
| 183 |
|
---|
| 184 | /*computation of average and variance itself:*/
|
---|
| 185 | IssmDouble** maxxs = NULL;
|
---|
| 186 | IssmDouble** minxs = NULL;
|
---|
| 187 | int* xtype=NULL;
|
---|
| 188 | int* xsize=NULL;
|
---|
| 189 |
|
---|
| 190 | IssmDouble** maxmeans=NULL;
|
---|
| 191 | IssmDouble** minmeans=NULL;
|
---|
| 192 | int* meanxtype=NULL;
|
---|
| 193 | int* meanxsize=NULL;
|
---|
| 194 |
|
---|
| 195 | /*only work on the statistical communicator: */
|
---|
| 196 | if (color==MPI_UNDEFINED)return 0;
|
---|
| 197 |
|
---|
| 198 | /*Retrieve parameters:*/
|
---|
| 199 | parameters->FindParam(&nfilesperdirectory,QmuNfilesPerDirectoryEnum);
|
---|
| 200 | parameters->FindParam(&nsamples,QmuNsampleEnum);
|
---|
| 201 | parameters->FindParam(&directory,DirectoryNameEnum);
|
---|
| 202 | parameters->FindParam(&model,InputFileNameEnum);
|
---|
| 203 | parameters->FindParam(&fields,&nfields,FieldsEnum);
|
---|
| 204 | parameters->FindParam(&steps,&nsteps,StepsEnum);
|
---|
| 205 | parameters->FindParam(&nbins,NbinsEnum);
|
---|
| 206 |
|
---|
| 207 | /*Get rank from the stat comm communicator:*/
|
---|
| 208 | IssmComm::SetComm(statcomm);
|
---|
| 209 | int my_rank=IssmComm::GetRank();
|
---|
| 210 |
|
---|
| 211 | /*Open files and read them complelety, in a distributed way:*/
|
---|
| 212 | range=DetermineLocalSize(nsamples,IssmComm::GetComm());
|
---|
| 213 | GetOwnershipBoundariesFromRange(&lower_row,&upper_row,range,IssmComm::GetComm());
|
---|
| 214 |
|
---|
| 215 | /*Initialize arrays:*/
|
---|
| 216 | maxmeans=xNew<IssmDouble*>(nfields);
|
---|
| 217 | minmeans=xNew<IssmDouble*>(nfields);
|
---|
| 218 | meanxtype=xNew<int>(nfields);
|
---|
| 219 | meanxsize=xNew<int>(nfields);
|
---|
| 220 |
|
---|
| 221 | maxxs=xNew<IssmDouble*>(nfields*nsteps);
|
---|
| 222 | minxs=xNew<IssmDouble*>(nfields*nsteps);
|
---|
| 223 | xtype=xNew<int>(nfields*nsteps);
|
---|
| 224 | xsize=xNew<int>(nfields*nsteps);
|
---|
| 225 |
|
---|
| 226 | /*Start opening files:*/
|
---|
| 227 | for(int i=(lower_row+1);i<=upper_row;i++){
|
---|
| 228 | _printf0_("reading file #: " << i << "\n");
|
---|
[27268] | 229 | /*First read file to figure out size of it in order to create memory buffer mapping into the file. {{{
|
---|
| 230 | *This makes it much more efficient to read files without lag.:*/
|
---|
[25596] | 231 | char file[1000];
|
---|
| 232 | long int length;
|
---|
| 233 | char* buffer=NULL;
|
---|
| 234 |
|
---|
| 235 | /*string:*/
|
---|
| 236 | sprintf(file,"%s/%i/%s.outbin.%i",directory,my_rank+1,model,i);
|
---|
| 237 |
|
---|
| 238 | /*open file: */
|
---|
| 239 | _printf0_(" opening file: " << file << "\n");
|
---|
| 240 | FILE* fid=fopen(file,"rb");
|
---|
| 241 | if(fid==NULL)_error_("cound not open file: " << file << "\n");
|
---|
| 242 |
|
---|
| 243 | /*figure out size of file, and read the whole thing:*/
|
---|
| 244 | _printf0_(" reading file:\n");
|
---|
[25639] | 245 | fseek(fid, 0, SEEK_END);
|
---|
[25596] | 246 | length = ftell (fid);
|
---|
[25639] | 247 | fseek(fid, 0, SEEK_SET);
|
---|
[25596] | 248 | buffer = xNew<char>(length);
|
---|
[25639] | 249 | fread(buffer, sizeof(char), length, fid);
|
---|
[25596] | 250 |
|
---|
| 251 | /*close file:*/
|
---|
[25639] | 252 | fclose(fid);
|
---|
[25596] | 253 |
|
---|
[27268] | 254 | /*create a memory stream with this buffer which will be use to read the files:*/
|
---|
[25596] | 255 | _printf0_(" processing file:\n");
|
---|
| 256 | fid=fmemopen(buffer, length, "rb");
|
---|
[27268] | 257 | /*}}}*/
|
---|
| 258 | /*Figure out for each field, each time step, arrays on each cpu holwing min anx max values:{{{*/
|
---|
[25596] | 259 | for (int f=0;f<nfields;f++){
|
---|
| 260 | char* field=fields[f];
|
---|
| 261 | fseek(fid,0,SEEK_SET);
|
---|
| 262 | for (int j=0;j<nsteps;j++){
|
---|
| 263 | int counter=f*nsteps+j;
|
---|
| 264 | xtype[counter]=readdata(&doublemat, &doublematsize, &scalar, fid,field,steps[j]);
|
---|
| 265 | if(i==(lower_row+1)){
|
---|
| 266 | if(xtype[counter]==1){
|
---|
| 267 | maxxs[counter]=xNew<IssmDouble>(1);
|
---|
| 268 | minxs[counter]=xNew<IssmDouble>(1);
|
---|
| 269 | *maxxs[counter]=scalar;
|
---|
| 270 | *minxs[counter]=scalar;
|
---|
| 271 | xsize[counter]=1;
|
---|
| 272 | }
|
---|
| 273 | else if (xtype[counter]==3){
|
---|
| 274 | maxxs[counter]=xNew<IssmDouble>(doublematsize);
|
---|
| 275 | xMemCpy<IssmDouble>(maxxs[counter],doublemat,doublematsize);
|
---|
| 276 | minxs[counter]=xNew<IssmDouble>(doublematsize);
|
---|
| 277 | xMemCpy<IssmDouble>(minxs[counter],doublemat,doublematsize);
|
---|
| 278 | xsize[counter]=doublematsize;
|
---|
| 279 | xDelete<IssmDouble>(doublemat);
|
---|
| 280 | }
|
---|
| 281 | else _error_("cannot carry out statistics on type " << xtype[counter]);
|
---|
| 282 | }
|
---|
| 283 | else{
|
---|
| 284 | if(xtype[counter]==1){
|
---|
| 285 | *maxxs[counter]=max(*maxxs[counter],scalar);
|
---|
| 286 | *minxs[counter]=min(*minxs[counter],scalar);
|
---|
| 287 | }
|
---|
| 288 | else if (xtype[counter]==3){
|
---|
| 289 | IssmDouble* newmax=maxxs[counter];
|
---|
| 290 | IssmDouble* newmin=minxs[counter];
|
---|
| 291 | for(int k=0;k<doublematsize;k++){
|
---|
| 292 | if(doublemat[k]>newmax[k])newmax[k]=doublemat[k];
|
---|
| 293 | if(doublemat[k]<newmin[k])newmin[k]=doublemat[k];
|
---|
| 294 | }
|
---|
| 295 | xDelete<IssmDouble>(doublemat);
|
---|
| 296 | }
|
---|
| 297 | else _error_("cannot carry out statistics on type " << xtype[counter]);
|
---|
| 298 | }
|
---|
| 299 | }
|
---|
| 300 | }
|
---|
[27268] | 301 | /*}}}*/
|
---|
| 302 | /*Same thing for average in time:{{{*/
|
---|
[25596] | 303 | _printf0_(" average in time:\n");
|
---|
| 304 |
|
---|
| 305 | /*Deal with average in time: */
|
---|
| 306 | for (int f=0;f<nfields;f++){
|
---|
| 307 | fseek(fid,0,SEEK_SET);
|
---|
| 308 | char* field=fields[f];
|
---|
| 309 | meanxtype[f]=readdata(&doublemat, &doublematsize, &scalar, fid,field,steps[0]);
|
---|
[26468] | 310 |
|
---|
[25596] | 311 | if(meanxtype[f]==1){
|
---|
| 312 | meanxsize[f]=1;
|
---|
| 313 | IssmDouble timemean=0;
|
---|
| 314 | fseek(fid,0,SEEK_SET);
|
---|
| 315 | for (int j=0;j<nsteps;j++){
|
---|
| 316 | readdata(&doublemat, &doublematsize, &scalar, fid,field,steps[j]);
|
---|
| 317 | timemean+=scalar/nsteps;
|
---|
| 318 | }
|
---|
[26468] | 319 |
|
---|
[25596] | 320 | /*Figure out max and min of time means: */
|
---|
| 321 | if(i==(lower_row+1)){
|
---|
| 322 | maxmeans[f]=xNewZeroInit<IssmDouble>(1);
|
---|
| 323 | minmeans[f]=xNewZeroInit<IssmDouble>(1);
|
---|
| 324 | *maxmeans[f]=timemean;
|
---|
| 325 | *minmeans[f]=timemean;
|
---|
| 326 | }
|
---|
| 327 | else{
|
---|
| 328 | *maxmeans[f]=max(*maxmeans[f],timemean);
|
---|
| 329 | *minmeans[f]=min(*minmeans[f],timemean);
|
---|
| 330 | }
|
---|
| 331 | }
|
---|
| 332 | else{
|
---|
| 333 | meanxsize[f]=doublematsize;
|
---|
| 334 | fseek(fid,0,SEEK_SET);
|
---|
| 335 | IssmDouble* timemean=xNewZeroInit<IssmDouble>(doublematsize);
|
---|
| 336 | for (int j=0;j<nsteps;j++){
|
---|
| 337 | readdata(&doublemat, &doublematsize, &scalar, fid,field,steps[j]);
|
---|
| 338 | for (int k=0;k<doublematsize;k++){
|
---|
| 339 | timemean[k]+=doublemat[k]/nsteps;
|
---|
| 340 | }
|
---|
| 341 | xDelete<IssmDouble>(doublemat);
|
---|
| 342 | }
|
---|
| 343 |
|
---|
| 344 | if(i==(lower_row+1)){
|
---|
| 345 | maxmeans[f]=xNew<IssmDouble>(doublematsize);
|
---|
| 346 | xMemCpy<IssmDouble>(maxmeans[f],timemean,doublematsize);
|
---|
| 347 | minmeans[f]=xNew<IssmDouble>(doublematsize);
|
---|
| 348 | xMemCpy<IssmDouble>(minmeans[f],timemean,doublematsize);
|
---|
| 349 | }
|
---|
| 350 | else{
|
---|
| 351 | IssmDouble* maxx=maxmeans[f];
|
---|
| 352 | IssmDouble* minx=minmeans[f];
|
---|
| 353 |
|
---|
| 354 | for(int k=0;k<doublematsize;k++){
|
---|
| 355 | maxx[k]=max(maxx[k],timemean[k]);
|
---|
| 356 | minx[k]=min(minx[k],timemean[k]);
|
---|
| 357 | }
|
---|
| 358 | maxmeans[f]=maxx;
|
---|
| 359 | minmeans[f]=minx;
|
---|
| 360 | }
|
---|
| 361 | }
|
---|
| 362 | }
|
---|
[27268] | 363 | /*}}}*/
|
---|
| 364 | /*Done reading files, close buffer and free memory:{{{*/
|
---|
[25596] | 365 | fclose(fid);
|
---|
| 366 | xDelete<char>(buffer);
|
---|
[27268] | 367 | /*}}}*/
|
---|
[25596] | 368 | }
|
---|
| 369 | ISSM_MPI_Barrier(IssmComm::GetComm());
|
---|
| 370 | _printf0_("Done reading files, now computing min and max.\n");
|
---|
| 371 |
|
---|
[27268] | 372 | /*We have collected minx and max across the cluster, now gather across the cluster onto
|
---|
[25596] | 373 | *cpu0 and then compute statistics:*/
|
---|
| 374 | for (int f=0;f<nfields;f++){
|
---|
| 375 | int counter0=f*nsteps+0;
|
---|
| 376 | if (xtype[counter0]==1){ /*deal with scalars {{{*/
|
---|
| 377 | for (int j=0;j<nsteps;j++){
|
---|
| 378 | int counter=f*nsteps+j;
|
---|
| 379 |
|
---|
| 380 | /*we are broadcasting doubles:*/
|
---|
| 381 | IssmDouble maxscalar=*maxxs[counter];
|
---|
| 382 | IssmDouble minscalar=*minxs[counter];
|
---|
| 383 | IssmDouble allmaxscalar;
|
---|
| 384 | IssmDouble allminscalar;
|
---|
| 385 | IssmDouble sumscalar_alltimes=0;
|
---|
| 386 |
|
---|
| 387 | ISSM_MPI_Allreduce(&maxscalar,&allmaxscalar,1,ISSM_MPI_PDOUBLE,ISSM_MPI_MAX,IssmComm::GetComm());
|
---|
| 388 | ISSM_MPI_Allreduce(&minscalar,&allminscalar,1,ISSM_MPI_PDOUBLE,ISSM_MPI_MIN,IssmComm::GetComm());
|
---|
| 389 |
|
---|
| 390 | /*Store broadcasted value for later computation of histograms:*/
|
---|
| 391 | *maxxs[counter]=allmaxscalar;
|
---|
| 392 | *minxs[counter]=allminscalar;
|
---|
| 393 |
|
---|
| 394 | }
|
---|
| 395 | } /*}}}*/
|
---|
| 396 | else{ /*deal with arrays:{{{*/
|
---|
| 397 |
|
---|
| 398 | int size=xsize[counter0];
|
---|
| 399 | for (int j=0;j<nsteps;j++){
|
---|
| 400 | int counter=f*nsteps+j;
|
---|
| 401 |
|
---|
| 402 | /*we are broadcasting double arrays:*/
|
---|
| 403 | IssmDouble* maxx=maxxs[counter];
|
---|
| 404 | IssmDouble* minx=minxs[counter];
|
---|
| 405 |
|
---|
| 406 | IssmDouble* allmax=xNew<IssmDouble>(size);
|
---|
| 407 | IssmDouble* allmin=xNew<IssmDouble>(size);
|
---|
[26468] | 408 |
|
---|
[25596] | 409 | ISSM_MPI_Allreduce(maxx,allmax,size,ISSM_MPI_PDOUBLE,ISSM_MPI_MAX,IssmComm::GetComm());
|
---|
| 410 | ISSM_MPI_Allreduce(minx,allmin,size,ISSM_MPI_PDOUBLE,ISSM_MPI_MIN,IssmComm::GetComm());
|
---|
| 411 |
|
---|
| 412 | /*Store broadcasted value for later computation of histograms:*/
|
---|
| 413 | maxxs[counter]=allmax;
|
---|
| 414 | minxs[counter]=allmin;
|
---|
| 415 | }
|
---|
| 416 | } /*}}}*/
|
---|
| 417 | }
|
---|
[26468] | 418 |
|
---|
[25596] | 419 | /*Now do the same for the time mean fields:*/
|
---|
| 420 | for (int f=0;f<nfields;f++){
|
---|
| 421 | if (meanxtype[f]==1){ /*deal with scalars {{{*/
|
---|
| 422 |
|
---|
| 423 | /*we are broadcasting doubles:*/
|
---|
| 424 | IssmDouble maxscalar=*maxmeans[f];
|
---|
| 425 | IssmDouble minscalar=*minmeans[f];
|
---|
| 426 | IssmDouble allmaxscalar;
|
---|
| 427 | IssmDouble allminscalar;
|
---|
| 428 |
|
---|
| 429 | ISSM_MPI_Allreduce(&maxscalar,&allmaxscalar,1,ISSM_MPI_PDOUBLE,ISSM_MPI_MAX,IssmComm::GetComm());
|
---|
| 430 | ISSM_MPI_Allreduce(&minscalar,&allminscalar,1,ISSM_MPI_PDOUBLE,ISSM_MPI_MIN,IssmComm::GetComm());
|
---|
| 431 |
|
---|
| 432 | /*Store for later use in histogram computation:*/
|
---|
| 433 | *maxmeans[f]=allmaxscalar;
|
---|
| 434 | *minmeans[f]=allminscalar;
|
---|
| 435 |
|
---|
| 436 | } /*}}}*/
|
---|
| 437 | else{ /*deal with arrays:{{{*/
|
---|
| 438 |
|
---|
| 439 | int size=meanxsize[f];
|
---|
| 440 |
|
---|
| 441 | /*we are broadcasting double arrays:*/
|
---|
| 442 | IssmDouble* maxx=maxmeans[f];
|
---|
| 443 | IssmDouble* minx=minmeans[f];
|
---|
| 444 |
|
---|
| 445 | IssmDouble* allmax=xNew<IssmDouble>(size);
|
---|
| 446 | IssmDouble* allmin=xNew<IssmDouble>(size);
|
---|
| 447 |
|
---|
| 448 | ISSM_MPI_Allreduce(maxx,allmax,size,ISSM_MPI_PDOUBLE,ISSM_MPI_MAX,IssmComm::GetComm());
|
---|
| 449 | ISSM_MPI_Allreduce(minx,allmin,size,ISSM_MPI_PDOUBLE,ISSM_MPI_MIN,IssmComm::GetComm());
|
---|
| 450 |
|
---|
| 451 | /*Store for later use in histogram computation:*/
|
---|
| 452 | maxmeans[f]=allmax;
|
---|
| 453 | minmeans[f]=allmin;
|
---|
| 454 |
|
---|
| 455 | } /*}}}*/
|
---|
| 456 | }
|
---|
| 457 |
|
---|
| 458 | /*Now that we have the min and max, we can start binning. First allocate
|
---|
| 459 | * histograms, then start filling them:*/
|
---|
| 460 | IssmDouble** histogram=xNew<IssmDouble*>(nfields*nsteps);
|
---|
| 461 | IssmDouble** timehistogram=xNew<IssmDouble*>(nfields);
|
---|
| 462 | _printf0_("Start reading files again, this time binning values in the histogram:\n");
|
---|
| 463 | /*Start opening files:*/
|
---|
| 464 | for (int i=(lower_row+1);i<=upper_row;i++){
|
---|
| 465 | _printf0_("reading file #: " << i << "\n");
|
---|
[27268] | 466 | /*read file and make a buffer:{{{*/
|
---|
[25596] | 467 | char file[1000];
|
---|
| 468 | long int length;
|
---|
| 469 | char* buffer=NULL;
|
---|
| 470 |
|
---|
| 471 | /*string:*/
|
---|
| 472 | sprintf(file,"%s/%i/%s.outbin.%i",directory,my_rank+1,model,i);
|
---|
| 473 |
|
---|
| 474 | /*open file: */
|
---|
| 475 | _printf0_(" opening file:\n");
|
---|
| 476 | FILE* fid=fopen(file,"rb");
|
---|
| 477 | if(fid==NULL)_error_("cound not open file: " << file << "\n");
|
---|
| 478 |
|
---|
| 479 | /*figure out size of file, and read the whole thing:*/
|
---|
| 480 | _printf0_(" reading file:\n");
|
---|
| 481 | fseek (fid, 0, SEEK_END);
|
---|
| 482 | length = ftell (fid);
|
---|
| 483 | fseek (fid, 0, SEEK_SET);
|
---|
| 484 | buffer = xNew<char>(length);
|
---|
| 485 | fread (buffer, sizeof(char), length, fid);
|
---|
| 486 |
|
---|
| 487 | /*close file:*/
|
---|
| 488 | fclose (fid);
|
---|
| 489 |
|
---|
| 490 | /*create a memory stream with this buffer:*/
|
---|
| 491 | _printf0_(" processing file:\n");
|
---|
| 492 | fid=fmemopen(buffer, length, "rb");
|
---|
[27268] | 493 | /*}}}*/
|
---|
| 494 | /*read data and fill up the histogram using the min and max values from before:{{{*/
|
---|
[25596] | 495 | for (int f=0;f<nfields;f++){
|
---|
| 496 | char* field=fields[f];
|
---|
| 497 | fseek(fid,0,SEEK_SET);
|
---|
| 498 | for (int j=0;j<nsteps;j++){
|
---|
| 499 | int counter=f*nsteps+j;
|
---|
| 500 | xtype[counter]=readdata(&doublemat, &doublematsize, &scalar, fid,field,steps[j]);
|
---|
| 501 | if(i==(lower_row+1)){
|
---|
| 502 | if(xtype[counter]==1){
|
---|
| 503 | IssmDouble* localhistogram=xNewZeroInit<IssmDouble>(nbins);
|
---|
| 504 | IssmDouble ma=*maxxs[counter];
|
---|
| 505 | IssmDouble mi=*minxs[counter];
|
---|
| 506 | int index=(scalar-mi)/(ma-mi)*nbins; if (index==nbins)index--;
|
---|
[25615] | 507 | if(ma==mi)index=0;
|
---|
| 508 | //_printf_( index << "|" << scalar << "|" << mi << "|" << ma << "|" << nbins << "\n");
|
---|
[25596] | 509 | localhistogram[index]++;
|
---|
| 510 | histogram[counter]=localhistogram;
|
---|
| 511 | }
|
---|
| 512 | else if (xtype[counter]==3){
|
---|
| 513 | IssmDouble* localhistogram=xNewZeroInit<IssmDouble>(doublematsize*nbins);
|
---|
| 514 | IssmDouble* ma=maxxs[counter];
|
---|
| 515 | IssmDouble* mi=minxs[counter];
|
---|
| 516 | for (int k=0;k<doublematsize;k++){
|
---|
| 517 | IssmDouble scalar=doublemat[k];
|
---|
| 518 | int index=(scalar-mi[k])/(ma[k]-mi[k])*nbins; if (index==nbins)index--;
|
---|
[25615] | 519 | if (mi[k]==ma[k])index=0;
|
---|
[25596] | 520 | _assert_(scalar<=ma[k]); _assert_(scalar>=mi[k]); _assert_(index<nbins);
|
---|
| 521 | localhistogram[k*nbins+index]++;
|
---|
| 522 | }
|
---|
| 523 | histogram[counter]=localhistogram;
|
---|
| 524 | xDelete<IssmDouble>(doublemat);
|
---|
| 525 | }
|
---|
| 526 | else _error_("cannot carry out statistics on type " << xtype[counter]);
|
---|
| 527 | }
|
---|
| 528 | else{
|
---|
| 529 | if(xtype[counter]==1){
|
---|
| 530 | IssmDouble* localhistogram=histogram[counter];
|
---|
| 531 | IssmDouble ma=*maxxs[counter];
|
---|
| 532 | IssmDouble mi=*minxs[counter];
|
---|
| 533 | int index=(scalar-mi)/(ma-mi)*nbins; if (index==nbins)index=nbins-1;
|
---|
[25615] | 534 | if(ma==mi)index=0;
|
---|
[25596] | 535 | localhistogram[index]++;
|
---|
| 536 | }
|
---|
| 537 | else if (xtype[counter]==3){
|
---|
| 538 | IssmDouble* localhistogram=histogram[counter];
|
---|
| 539 | IssmDouble* ma=maxxs[counter];
|
---|
| 540 | IssmDouble* mi=minxs[counter];
|
---|
| 541 | for (int k=0;k<doublematsize;k++){
|
---|
| 542 | IssmDouble scalar=doublemat[k];
|
---|
| 543 | int index=(scalar-mi[k])/(ma[k]-mi[k])*nbins; if (index==nbins)index=nbins-1;
|
---|
[25615] | 544 | if (mi[k]==ma[k])index=0;
|
---|
| 545 |
|
---|
[25596] | 546 | localhistogram[k*nbins+index]++;
|
---|
| 547 | }
|
---|
| 548 | xDelete<IssmDouble>(doublemat);
|
---|
| 549 | }
|
---|
| 550 | else _error_("cannot carry out statistics on type " << xtype[counter]);
|
---|
| 551 | }
|
---|
| 552 | }
|
---|
| 553 | }
|
---|
[27268] | 554 | /*}}}*/
|
---|
| 555 | /*Deal with average in time: {{{*/
|
---|
[25596] | 556 | _printf0_(" average in time:\n");
|
---|
| 557 | for (int f=0;f<nfields;f++){
|
---|
| 558 | fseek(fid,0,SEEK_SET);
|
---|
| 559 | char* field=fields[f];
|
---|
| 560 | meanxtype[f]=readdata(&doublemat, &doublematsize, &scalar, fid,field,steps[0]);
|
---|
[26468] | 561 |
|
---|
[25596] | 562 | if(meanxtype[f]==1){
|
---|
| 563 | IssmDouble timemean=0;
|
---|
| 564 | fseek(fid,0,SEEK_SET);
|
---|
| 565 | for (int j=0;j<nsteps;j++){
|
---|
| 566 | readdata(&doublemat, &doublematsize, &scalar, fid,field,steps[j]);
|
---|
| 567 | timemean+=scalar/nsteps;
|
---|
| 568 | }
|
---|
[26468] | 569 |
|
---|
[25596] | 570 | /*Figure out max and min of time means: */
|
---|
| 571 | if(i==(lower_row+1)){
|
---|
| 572 | IssmDouble* localhistogram=xNewZeroInit<IssmDouble>(nbins);
|
---|
| 573 | IssmDouble ma=*maxmeans[f];
|
---|
| 574 | IssmDouble mi=*minmeans[f];
|
---|
| 575 | int index=(timemean-mi)/(ma-mi)*nbins; if (index==nbins)index=nbins-1;
|
---|
[25615] | 576 | if(ma==mi)index=0;
|
---|
[25596] | 577 | localhistogram[index]++;
|
---|
| 578 | timehistogram[f]=localhistogram;
|
---|
| 579 | }
|
---|
| 580 | else{
|
---|
| 581 | IssmDouble* localhistogram=timehistogram[f];
|
---|
| 582 | IssmDouble ma=*maxmeans[f];
|
---|
| 583 | IssmDouble mi=*minmeans[f];
|
---|
| 584 | int index=(timemean-mi)/(ma-mi)*nbins; if (index==nbins)index=nbins-1;
|
---|
[25615] | 585 | if(ma==mi)index=0;
|
---|
[25596] | 586 | localhistogram[index]++;
|
---|
| 587 | }
|
---|
| 588 | }
|
---|
| 589 | else{
|
---|
| 590 | fseek(fid,0,SEEK_SET);
|
---|
| 591 | IssmDouble* timemean=xNewZeroInit<IssmDouble>(doublematsize);
|
---|
| 592 | for (int j=0;j<nsteps;j++){
|
---|
| 593 | readdata(&doublemat, &doublematsize, &scalar, fid,field,steps[j]);
|
---|
| 594 | for (int k=0;k<doublematsize;k++){
|
---|
| 595 | timemean[k]+=doublemat[k]/nsteps;
|
---|
| 596 | }
|
---|
| 597 | xDelete<IssmDouble>(doublemat);
|
---|
| 598 | }
|
---|
| 599 |
|
---|
| 600 | if(i==(lower_row+1)){
|
---|
| 601 | IssmDouble* localhistogram=xNewZeroInit<IssmDouble>(doublematsize*nbins);
|
---|
| 602 | IssmDouble* ma=maxmeans[f];
|
---|
| 603 | IssmDouble* mi=minmeans[f];
|
---|
[26468] | 604 |
|
---|
[25596] | 605 | for (int k=0;k<doublematsize;k++){
|
---|
| 606 | IssmDouble scalar=timemean[k];
|
---|
| 607 | int index=(scalar-mi[k])/(ma[k]-mi[k])*nbins; if (index==nbins)index=nbins-1;
|
---|
[25615] | 608 | if (mi[k]==ma[k])index=0;
|
---|
[25596] | 609 | localhistogram[k*nbins+index]++;
|
---|
| 610 | }
|
---|
| 611 | timehistogram[f]=localhistogram;
|
---|
| 612 | }
|
---|
| 613 | else{
|
---|
[26468] | 614 |
|
---|
[25596] | 615 | IssmDouble* localhistogram=timehistogram[f];
|
---|
| 616 | IssmDouble* ma=maxmeans[f];
|
---|
| 617 | IssmDouble* mi=minmeans[f];
|
---|
[26468] | 618 |
|
---|
[25596] | 619 | for (int k=0;k<doublematsize;k++){
|
---|
| 620 | IssmDouble scalar=timemean[k];
|
---|
| 621 | int index=(scalar-mi[k])/(ma[k]-mi[k])*nbins; if (index==nbins)index=nbins-1;
|
---|
[25615] | 622 | if (mi[k]==ma[k])index=0;
|
---|
| 623 |
|
---|
[25596] | 624 | localhistogram[k*nbins+index]++;
|
---|
| 625 | }
|
---|
| 626 | }
|
---|
| 627 | }
|
---|
| 628 | }
|
---|
[27268] | 629 | /*}}}*/
|
---|
| 630 | /*close file and delete allocation:{{{*/
|
---|
[25596] | 631 | fclose(fid);
|
---|
| 632 | xDelete<char>(buffer);
|
---|
[27268] | 633 | /*}}}*/
|
---|
[25596] | 634 | }
|
---|
| 635 |
|
---|
[27268] | 636 |
|
---|
[25596] | 637 | /*We have agregated histograms across the cluster, now gather them across the cluster onto
|
---|
| 638 | *cpu0: */
|
---|
[27268] | 639 | _printf0_("Collect histograms on cpu 0 and save to results:\n");
|
---|
[25596] | 640 | for (int f=0;f<nfields;f++){
|
---|
| 641 | int counter0=f*nsteps+0;
|
---|
| 642 | if (xtype[counter0]==1){ /*deal with scalars {{{*/
|
---|
| 643 | for (int j=0;j<nsteps;j++){
|
---|
| 644 | int counter=f*nsteps+j;
|
---|
| 645 |
|
---|
| 646 | /*we are broadcasting doubles:*/
|
---|
| 647 | IssmDouble* histo=histogram[counter]; //size nbins
|
---|
| 648 | IssmDouble* allhisto=xNewZeroInit<IssmDouble>(nbins);
|
---|
| 649 |
|
---|
| 650 | ISSM_MPI_Allreduce(histo,allhisto,nbins,ISSM_MPI_PDOUBLE,ISSM_MPI_SUM,IssmComm::GetComm());
|
---|
[27268] | 651 | xDelete<IssmDouble>(histo);
|
---|
[25596] | 652 |
|
---|
[27268] | 653 | /*add to results while deallocating as much as possible:*/
|
---|
| 654 | char fieldname[1000];
|
---|
[25596] | 655 | if(my_rank==0){
|
---|
[27268] | 656 | sprintf(fieldname,"%s%s",fields[f],"Histogram"); results->AddResult(new GenericExternalResult<IssmPDouble*>(results->Size()+1,fieldname,allhisto,1,nbins,j+1,0));
|
---|
[25596] | 657 | }
|
---|
[27268] | 658 | xDelete<IssmDouble>(allhisto);
|
---|
| 659 | if(my_rank==0){
|
---|
[27273] | 660 | sprintf(fieldname,"%s%s",fields[f],"Max"); results->AddResult(new GenericExternalResult<IssmDouble>(results->Size()+1,fieldname,*maxxs[counter],steps[j],0));
|
---|
| 661 | sprintf(fieldname,"%s%s",fields[f],"Min"); results->AddResult(new GenericExternalResult<IssmDouble>(results->Size()+1,fieldname,*minxs[counter],steps[j],0));
|
---|
[27268] | 662 | }
|
---|
| 663 | xDelete<IssmDouble>(maxxs[counter]);
|
---|
| 664 | xDelete<IssmDouble>(minxs[counter]);
|
---|
[25596] | 665 | }
|
---|
| 666 | } /*}}}*/
|
---|
| 667 | else{ /*deal with arrays:{{{*/
|
---|
| 668 |
|
---|
| 669 | int size=xsize[counter0];
|
---|
| 670 | for (int j=0;j<nsteps;j++){
|
---|
| 671 | int counter=f*nsteps+j;
|
---|
| 672 |
|
---|
| 673 | /*we are broadcasting double arrays:*/
|
---|
| 674 | IssmDouble* histo=histogram[counter];
|
---|
| 675 | IssmDouble* allhisto=xNew<IssmDouble>(size*nbins);
|
---|
[26468] | 676 |
|
---|
[25596] | 677 | ISSM_MPI_Allreduce(histo,allhisto,size*nbins,ISSM_MPI_PDOUBLE,ISSM_MPI_SUM,IssmComm::GetComm());
|
---|
| 678 | xDelete<IssmDouble>(histo);
|
---|
| 679 |
|
---|
| 680 | /*add to results:*/
|
---|
[27268] | 681 | char fieldname[1000];
|
---|
[25596] | 682 | if(my_rank==0){
|
---|
[27268] | 683 | sprintf(fieldname,"%s%s",fields[f],"Histogram"); results->AddResult(new GenericExternalResult<IssmPDouble*>(results->Size()+1,fieldname,allhisto,size,nbins,j+1,0));
|
---|
[25596] | 684 | }
|
---|
[27268] | 685 | xDelete<IssmDouble>(allhisto);
|
---|
| 686 | if(my_rank==0){
|
---|
[27273] | 687 | sprintf(fieldname,"%s%s",fields[f],"Max"); results->AddResult(new GenericExternalResult<IssmPDouble*>(results->Size()+1,fieldname,maxxs[counter],size,1,steps[j],0));
|
---|
| 688 | sprintf(fieldname,"%s%s",fields[f],"Min"); results->AddResult(new GenericExternalResult<IssmPDouble*>(results->Size()+1,fieldname,minxs[counter],size,1,steps[j],0));
|
---|
[27268] | 689 | }
|
---|
| 690 | xDelete<IssmDouble>(maxxs[counter]);
|
---|
| 691 | xDelete<IssmDouble>(minxs[counter]);
|
---|
[25596] | 692 | }
|
---|
| 693 | } /*}}}*/
|
---|
| 694 | }
|
---|
| 695 | /*Now do the same for the time mean fields:*/
|
---|
[27268] | 696 | _printf0_("Collect time mean histograms on cpu 0 and save to results:\n");
|
---|
[25596] | 697 | for (int f=0;f<nfields;f++){
|
---|
| 698 | if (meanxtype[f]==1){ /*deal with scalars {{{*/
|
---|
| 699 |
|
---|
| 700 | /*we are broadcasting doubles:*/
|
---|
| 701 | IssmDouble* histo=timehistogram[f];
|
---|
| 702 | IssmDouble* allhisto=xNewZeroInit<IssmDouble>(nbins);
|
---|
| 703 |
|
---|
| 704 | ISSM_MPI_Allreduce(histo,allhisto,nbins,ISSM_MPI_PDOUBLE,ISSM_MPI_MAX,IssmComm::GetComm());
|
---|
[27268] | 705 | xDelete<IssmDouble>(histo);
|
---|
[25596] | 706 |
|
---|
| 707 | /*add to results at time step 1:*/
|
---|
[27268] | 708 | char fieldname[1000];
|
---|
[25596] | 709 | if(my_rank==0){
|
---|
[27268] | 710 | sprintf(fieldname,"%s%s",fields[f],"TimeMeanHistogram"); results->AddResult(new GenericExternalResult<IssmPDouble*>(results->Size()+1,fieldname,allhisto,1,nbins,steps[0],0));
|
---|
[25596] | 711 | }
|
---|
[27268] | 712 | xDelete<IssmDouble>(allhisto);
|
---|
| 713 | if(my_rank==0){
|
---|
| 714 | sprintf(fieldname,"%s%s",fields[f],"TimeMeanMax"); results->AddResult(new GenericExternalResult<IssmDouble>(results->Size()+1,fieldname,*maxmeans[f],steps[0],0));
|
---|
| 715 | sprintf(fieldname,"%s%s",fields[f],"TimeMeaMin"); results->AddResult(new GenericExternalResult<IssmDouble>(results->Size()+1,fieldname,*minmeans[f],steps[0],0));
|
---|
| 716 | }
|
---|
| 717 | xDelete<IssmDouble>(maxmeans[f]);
|
---|
| 718 | xDelete<IssmDouble>(minmeans[f]);
|
---|
[25596] | 719 | } /*}}}*/
|
---|
| 720 | else{ /*deal with arrays:{{{*/
|
---|
| 721 |
|
---|
| 722 | int size=meanxsize[f];
|
---|
| 723 |
|
---|
| 724 | /*we are broadcasting double arrays:*/
|
---|
| 725 | IssmDouble* histo=timehistogram[f];
|
---|
| 726 | IssmDouble* allhisto=xNewZeroInit<IssmDouble>(size*nbins);
|
---|
| 727 |
|
---|
| 728 | ISSM_MPI_Allreduce(histo,allhisto,size*nbins,ISSM_MPI_PDOUBLE,ISSM_MPI_SUM,IssmComm::GetComm());
|
---|
| 729 | xDelete<IssmDouble>(histo);
|
---|
[27268] | 730 |
|
---|
[25596] | 731 | /*add to results at step 1:*/
|
---|
[27268] | 732 | char fieldname[1000];
|
---|
[25596] | 733 | if(my_rank==0){
|
---|
[27268] | 734 | sprintf(fieldname,"%s%s",fields[f],"TimeMeanHistogram"); results->AddResult(new GenericExternalResult<IssmPDouble*>(results->Size()+1,fieldname,allhisto,size,nbins,steps[0],0));
|
---|
[25596] | 735 | }
|
---|
[27268] | 736 | xDelete<IssmDouble>(allhisto);
|
---|
| 737 | if(my_rank==0){
|
---|
| 738 | sprintf(fieldname,"%s%s",fields[f],"TimeMeanMax"); results->AddResult(new GenericExternalResult<IssmPDouble*>(results->Size()+1,fieldname,maxmeans[f],size,1,steps[0],0));
|
---|
| 739 | sprintf(fieldname,"%s%s",fields[f],"TimeMeanMin"); results->AddResult(new GenericExternalResult<IssmPDouble*>(results->Size()+1,fieldname,minmeans[f],size,1,steps[0],0));
|
---|
| 740 | }
|
---|
| 741 | xDelete<IssmDouble>(maxmeans[f]);
|
---|
| 742 | xDelete<IssmDouble>(minmeans[f]);
|
---|
[25596] | 743 | } /*}}}*/
|
---|
| 744 | }
|
---|
| 745 | _printf0_("Done aggregating time mean histogram:\n");
|
---|
| 746 | IssmComm::SetComm(ISSM_MPI_COMM_WORLD);
|
---|
[27268] | 747 |
|
---|
| 748 | /*Free allocations:*/
|
---|
| 749 | xDelete<char>(directory);
|
---|
| 750 | xDelete<char>(model);
|
---|
| 751 | for (int i=0;i<nfields;i++)xDelete<char>(fields[i]);
|
---|
| 752 | xDelete<char*>(fields);
|
---|
| 753 | xDelete<int>(steps);
|
---|
| 754 | xDelete<IssmDouble*>(maxxs);
|
---|
| 755 | xDelete<IssmDouble*>(minxs);
|
---|
| 756 | xDelete<IssmDouble*>(maxmeans);
|
---|
| 757 | xDelete<IssmDouble*>(minmeans);
|
---|
| 758 | xDelete<int>(xtype);
|
---|
| 759 | xDelete<int>(xsize);
|
---|
[25711] | 760 |
|
---|
| 761 | return 1;
|
---|
[25596] | 762 | }
|
---|
| 763 | /*}}}*/
|
---|
| 764 | int ComputeMeanVariance(Parameters* parameters,Results* results,int color, ISSM_MPI_Comm statcomm){ /*{{{*/
|
---|
| 765 |
|
---|
[27273] | 766 | /*variables: {{{*/
|
---|
[25596] | 767 | int nsamples;
|
---|
| 768 | char* directory=NULL;
|
---|
| 769 | char* model=NULL;
|
---|
| 770 | char** fields=NULL;
|
---|
| 771 | int* steps=NULL;
|
---|
| 772 | int nsteps;
|
---|
| 773 | int nfields;
|
---|
| 774 | int range,lower_row,upper_row;
|
---|
[25599] | 775 | int nfilesperdirectory;
|
---|
[26468] | 776 |
|
---|
[25596] | 777 | /*intermediary:*/
|
---|
| 778 | IssmDouble* doublemat=NULL;
|
---|
| 779 | int doublematsize;
|
---|
| 780 | IssmDouble scalar;
|
---|
| 781 |
|
---|
| 782 | /*computation of average and variance itself:*/
|
---|
| 783 | IssmDouble* x = NULL;
|
---|
| 784 | IssmDouble* x2 = NULL;
|
---|
| 785 | IssmDouble** xs = NULL;
|
---|
| 786 | IssmDouble** xs2 = NULL;
|
---|
| 787 | int* xtype=NULL;
|
---|
| 788 | int* xsize=NULL;
|
---|
| 789 |
|
---|
| 790 | IssmDouble** meanx=NULL;
|
---|
| 791 | IssmDouble** meanx2=NULL;
|
---|
| 792 | int* meantype=NULL;
|
---|
| 793 | int* meansize=NULL;
|
---|
[27273] | 794 | /*}}}*/
|
---|
[25596] | 795 |
|
---|
[25599] | 796 | /*only work on the statistical communicator: */
|
---|
| 797 | if (color==MPI_UNDEFINED)return 0;
|
---|
| 798 |
|
---|
[25596] | 799 | /*Retrieve parameters:*/
|
---|
[25599] | 800 | parameters->FindParam(&nfilesperdirectory,QmuNfilesPerDirectoryEnum);
|
---|
[25596] | 801 | parameters->FindParam(&nsamples,QmuNsampleEnum);
|
---|
| 802 | parameters->FindParam(&directory,DirectoryNameEnum);
|
---|
| 803 | parameters->FindParam(&model,InputFileNameEnum);
|
---|
| 804 | parameters->FindParam(&fields,&nfields,FieldsEnum);
|
---|
| 805 | parameters->FindParam(&steps,&nsteps,StepsEnum);
|
---|
| 806 |
|
---|
[25599] | 807 | /*Get rank from the stat comm communicator:*/
|
---|
| 808 | IssmComm::SetComm(statcomm);
|
---|
[25596] | 809 | int my_rank=IssmComm::GetRank();
|
---|
| 810 |
|
---|
| 811 | /*Open files and read them complelety, in a distributed way:*/
|
---|
| 812 | range=DetermineLocalSize(nsamples,IssmComm::GetComm());
|
---|
| 813 | GetOwnershipBoundariesFromRange(&lower_row,&upper_row,range,IssmComm::GetComm());
|
---|
| 814 |
|
---|
[27273] | 815 | /*Initialize arrays:{{{*/
|
---|
[25596] | 816 | xs=xNew<IssmDouble*>(nfields*nsteps);
|
---|
| 817 | xs2=xNew<IssmDouble*>(nfields*nsteps);
|
---|
| 818 | xtype=xNew<int>(nfields*nsteps);
|
---|
| 819 | xsize=xNew<int>(nfields*nsteps);
|
---|
| 820 |
|
---|
| 821 | meantype=xNew<int>(nfields);
|
---|
| 822 | meansize=xNew<int>(nfields);
|
---|
| 823 | meanx=xNew<IssmDouble*>(nfields);
|
---|
| 824 | meanx2=xNew<IssmDouble*>(nfields);
|
---|
[27273] | 825 | /*}}}*/
|
---|
[25596] | 826 |
|
---|
| 827 | /*Start opening files:*/
|
---|
| 828 | for (int i=(lower_row+1);i<=upper_row;i++){
|
---|
| 829 | _printf0_("reading file #: " << i << "\n");
|
---|
[27273] | 830 | /*open buffer linked to file: {{{*/
|
---|
[25596] | 831 | char file[1000];
|
---|
| 832 | long int length;
|
---|
| 833 | char* buffer=NULL;
|
---|
| 834 |
|
---|
| 835 | /*string:*/
|
---|
| 836 | sprintf(file,"%s/%i/%s.outbin.%i",directory,my_rank+1,model,i);
|
---|
| 837 |
|
---|
| 838 | /*open file: */
|
---|
| 839 | _printf0_(" opening file: " << file << "\n");
|
---|
| 840 | FILE* fid=fopen(file,"rb");
|
---|
| 841 | if(fid==NULL) _error_(" could not open file: " << file << "\n");
|
---|
| 842 |
|
---|
| 843 | /*figure out size of file, and read the whole thing:*/
|
---|
| 844 | _printf0_(" reading file:\n");
|
---|
| 845 | fseek (fid, 0, SEEK_END);
|
---|
| 846 | length = ftell (fid);
|
---|
| 847 | fseek (fid, 0, SEEK_SET);
|
---|
| 848 | buffer = xNew<char>(length);
|
---|
| 849 | fread (buffer, sizeof(char), length, fid);
|
---|
| 850 |
|
---|
| 851 | /*close file:*/
|
---|
| 852 | fclose (fid);
|
---|
| 853 |
|
---|
| 854 | /*create a memory stream with this buffer:*/
|
---|
| 855 | _printf0_(" processing file:\n");
|
---|
| 856 | fid=fmemopen(buffer, length, "rb");
|
---|
[27273] | 857 | /*}}}*/
|
---|
| 858 | /*read x and x^2 values for each time step:{{{*/
|
---|
[25596] | 859 | for (int f=0;f<nfields;f++){
|
---|
| 860 | char* field=fields[f];
|
---|
| 861 | fseek(fid,0,SEEK_SET);
|
---|
| 862 | for (int j=0;j<nsteps;j++){
|
---|
| 863 | int counter=f*nsteps+j;
|
---|
| 864 | xtype[counter]=readdata(&doublemat, &doublematsize, &scalar, fid,field,steps[j]);
|
---|
| 865 | if(i==(lower_row+1)){
|
---|
| 866 | if(xtype[counter]==1){
|
---|
| 867 | xs[counter]=xNew<IssmDouble>(1);
|
---|
| 868 | xs2[counter]=xNew<IssmDouble>(1);
|
---|
| 869 | *xs[counter]=scalar;
|
---|
| 870 | *xs2[counter]=pow(scalar,2.0);
|
---|
| 871 | xsize[counter]=1;
|
---|
| 872 | }
|
---|
| 873 | else if (xtype[counter]==3){
|
---|
| 874 | IssmDouble* doublemat2=xNew<IssmDouble>(doublematsize);
|
---|
| 875 | for(int k=0;k<doublematsize;k++)doublemat2[k]=pow(doublemat[k],2.0);
|
---|
| 876 | xs[counter]=doublemat;
|
---|
| 877 | xs2[counter]=doublemat2;
|
---|
| 878 | xsize[counter]=doublematsize;
|
---|
| 879 | }
|
---|
| 880 | else _error_("cannot carry out statistics on type " << xtype[counter]);
|
---|
| 881 | }
|
---|
| 882 | else{
|
---|
| 883 | if(xtype[counter]==1){
|
---|
| 884 | *xs[counter]+=scalar;
|
---|
| 885 | *xs2[counter]+=pow(scalar,2.0);
|
---|
| 886 | }
|
---|
| 887 | else if (xtype[counter]==3){
|
---|
| 888 | IssmDouble* newdoublemat=xs[counter];
|
---|
| 889 | IssmDouble* newdoublemat2=xs2[counter];
|
---|
| 890 | for(int k=0;k<doublematsize;k++){
|
---|
| 891 | newdoublemat[k]+=doublemat[k];
|
---|
| 892 | newdoublemat2[k]+=pow(doublemat[k],2.0);
|
---|
| 893 | }
|
---|
| 894 | xs[counter]=newdoublemat;
|
---|
| 895 | xs2[counter]=newdoublemat2;
|
---|
| 896 | }
|
---|
| 897 | else _error_("cannot carry out statistics on type " << xtype[counter]);
|
---|
| 898 | }
|
---|
| 899 | }
|
---|
[27273] | 900 | }/*}}}*/
|
---|
| 901 | /*Same but for time mean: {{{*/
|
---|
[25596] | 902 | for (int f=0;f<nfields;f++){
|
---|
| 903 | char* field=fields[f];
|
---|
| 904 | fseek(fid,0,SEEK_SET);
|
---|
| 905 | meantype[f]=readdata(&doublemat, &doublematsize, &scalar, fid,field,steps[0]);
|
---|
| 906 | if(i==(lower_row+1)){
|
---|
| 907 | if(meantype[f]==1){
|
---|
| 908 | meanx[f]=xNewZeroInit<IssmDouble>(1);
|
---|
| 909 | meanx2[f]=xNewZeroInit<IssmDouble>(1);
|
---|
| 910 | meansize[f]=1;
|
---|
| 911 | }
|
---|
| 912 | else{
|
---|
| 913 | meanx[f]=xNewZeroInit<IssmDouble>(doublematsize);
|
---|
| 914 | meanx2[f]=xNewZeroInit<IssmDouble>(doublematsize);
|
---|
| 915 | meansize[f]=doublematsize;
|
---|
[27273] | 916 | xDelete<IssmDouble>(doublemat);
|
---|
[25596] | 917 | }
|
---|
| 918 | }
|
---|
[27273] | 919 | fseek(fid,0,SEEK_SET);
|
---|
[25596] | 920 | if(meantype[f]==1){
|
---|
| 921 | IssmDouble sc=0;
|
---|
| 922 | IssmDouble sc2=0;
|
---|
| 923 | for(int j=0;j<nsteps;j++){
|
---|
| 924 | readdata(&doublemat, &doublematsize, &scalar, fid,field,steps[j]);
|
---|
| 925 | sc+=scalar/nsteps;
|
---|
| 926 | }
|
---|
| 927 | sc2+=pow(sc,2.0);
|
---|
| 928 | *meanx[f]+=sc;
|
---|
| 929 | *meanx2[f]+=sc2;
|
---|
| 930 | }
|
---|
| 931 | else{
|
---|
| 932 | IssmDouble* sc=meanx[f];
|
---|
| 933 | IssmDouble* sc2=meanx2[f];
|
---|
| 934 | IssmDouble* timemean=xNewZeroInit<IssmDouble>(doublematsize);
|
---|
| 935 | IssmDouble* timemean2=xNewZeroInit<IssmDouble>(doublematsize);
|
---|
| 936 |
|
---|
| 937 | for(int j=0;j<nsteps;j++){
|
---|
| 938 | readdata(&doublemat, &doublematsize, &scalar, fid,field,steps[j]);
|
---|
| 939 | for (int k=0;k<doublematsize;k++){
|
---|
| 940 | timemean[k]+=doublemat[k]/nsteps;
|
---|
| 941 | }
|
---|
[27273] | 942 | xDelete<IssmDouble>(doublemat);
|
---|
[25596] | 943 | }
|
---|
| 944 | for (int k=0;k<doublematsize;k++){
|
---|
| 945 | timemean2[k]=pow(timemean[k],2.0);
|
---|
| 946 | }
|
---|
| 947 | for (int k=0;k<doublematsize;k++){
|
---|
| 948 | sc[k]+=timemean[k];
|
---|
| 949 | sc2[k]+=timemean2[k];
|
---|
| 950 | }
|
---|
| 951 |
|
---|
| 952 | }
|
---|
| 953 |
|
---|
[27273] | 954 | } /*}}}*/
|
---|
| 955 | /*cleanup:{{{*/
|
---|
[25596] | 956 | fclose(fid);
|
---|
| 957 | xDelete<char>(buffer);
|
---|
[27273] | 958 | /*}}}*/
|
---|
[25596] | 959 | }
|
---|
| 960 | ISSM_MPI_Barrier(IssmComm::GetComm());
|
---|
| 961 | _printf0_("Done reading files, now computing mean and variance.\n");
|
---|
| 962 |
|
---|
| 963 | /*We have agregated x and x^2 across the cluster, now gather across the cluster onto
|
---|
| 964 | *cpu0 and then compute statistics:*/
|
---|
| 965 | for (int f=0;f<nfields;f++){
|
---|
| 966 | int counter0=f*nsteps+0;
|
---|
| 967 | if (xtype[counter0]==1){ /*deal with scalars {{{*/
|
---|
| 968 | IssmDouble mean,stddev;
|
---|
| 969 | for (int j=0;j<nsteps;j++){
|
---|
| 970 | int counter=f*nsteps+j;
|
---|
| 971 |
|
---|
| 972 | /*we are broadcasting doubles:*/
|
---|
| 973 | IssmDouble scalar=*xs[counter];
|
---|
| 974 | IssmDouble scalar2=*xs2[counter];
|
---|
| 975 | IssmDouble sumscalar;
|
---|
| 976 | IssmDouble sumscalar2;
|
---|
| 977 |
|
---|
| 978 | ISSM_MPI_Reduce(&scalar,&sumscalar,1,ISSM_MPI_PDOUBLE,ISSM_MPI_SUM,0,IssmComm::GetComm());
|
---|
| 979 | ISSM_MPI_Reduce(&scalar2,&sumscalar2,1,ISSM_MPI_PDOUBLE,ISSM_MPI_SUM,0,IssmComm::GetComm());
|
---|
[27273] | 980 |
|
---|
| 981 | xDelete<IssmDouble>(xs[counter]);
|
---|
| 982 | xDelete<IssmDouble>(xs2[counter]);
|
---|
| 983 |
|
---|
[25596] | 984 | /*Build average and standard deviation. For standard deviation, use the
|
---|
| 985 | *following formula: sigma^2=E(x^2)-mu^2:*/
|
---|
| 986 | mean=sumscalar/nsamples;
|
---|
| 987 | stddev=sqrt(sumscalar2/nsamples-pow(mean,2.0));
|
---|
| 988 |
|
---|
| 989 | /*add to results:*/
|
---|
| 990 | if(my_rank==0){
|
---|
| 991 | char fieldname[1000];
|
---|
| 992 |
|
---|
| 993 | sprintf(fieldname,"%s%s",fields[f],"Mean");
|
---|
[27273] | 994 | results->AddResult(new GenericExternalResult<IssmDouble>(results->Size()+1,fieldname,mean,steps[j],0));
|
---|
[25596] | 995 | sprintf(fieldname,"%s%s",fields[f],"Stddev");
|
---|
[27273] | 996 | results->AddResult(new GenericExternalResult<IssmDouble>(results->Size()+1,fieldname,stddev,steps[j],0));
|
---|
[25596] | 997 | }
|
---|
| 998 |
|
---|
| 999 | }
|
---|
| 1000 | } /*}}}*/
|
---|
| 1001 | else{ /*deal with arrays:{{{*/
|
---|
| 1002 |
|
---|
| 1003 | int size=xsize[counter0];
|
---|
| 1004 |
|
---|
| 1005 | IssmDouble* mean=xNew<IssmDouble>(size);
|
---|
| 1006 | IssmDouble* stddev=xNew<IssmDouble>(size);
|
---|
| 1007 |
|
---|
| 1008 | for (int j=0;j<nsteps;j++){
|
---|
| 1009 | int counter=f*nsteps+j;
|
---|
| 1010 |
|
---|
| 1011 | /*we are broadcasting double arrays:*/
|
---|
| 1012 | x=xs[counter];
|
---|
| 1013 | x2=xs2[counter];
|
---|
| 1014 |
|
---|
| 1015 | IssmDouble* sumx=xNew<IssmDouble>(size);
|
---|
| 1016 | IssmDouble* sumx2=xNew<IssmDouble>(size);
|
---|
[26468] | 1017 |
|
---|
[25596] | 1018 | ISSM_MPI_Reduce(x,sumx,size,ISSM_MPI_PDOUBLE,ISSM_MPI_SUM,0,IssmComm::GetComm());
|
---|
| 1019 | ISSM_MPI_Reduce(x2,sumx2,size,ISSM_MPI_PDOUBLE,ISSM_MPI_SUM,0,IssmComm::GetComm());
|
---|
[27273] | 1020 |
|
---|
| 1021 | xDelete<IssmDouble>(xs[counter]);
|
---|
| 1022 | xDelete<IssmDouble>(xs2[counter]);
|
---|
[25596] | 1023 |
|
---|
| 1024 | /*Build average and standard deviation. For standard deviation, use the
|
---|
| 1025 | *following formula: sigma^2=E(x^2)-mu^2:*/
|
---|
| 1026 | for (int k=0;k<size;k++){
|
---|
| 1027 | mean[k]=sumx[k]/nsamples;
|
---|
| 1028 | stddev[k]=sqrt(sumx2[k]/nsamples-pow(mean[k],2.0));
|
---|
| 1029 | }
|
---|
[27273] | 1030 | xDelete<IssmDouble>(sumx);
|
---|
| 1031 | xDelete<IssmDouble>(sumx2);
|
---|
[25596] | 1032 |
|
---|
| 1033 | /*add to results:*/
|
---|
| 1034 | if(my_rank==0){
|
---|
| 1035 | char fieldname[1000];
|
---|
| 1036 |
|
---|
| 1037 | sprintf(fieldname,"%s%s",fields[f],"Mean");
|
---|
[27273] | 1038 | results->AddResult(new GenericExternalResult<IssmPDouble*>(results->Size()+1,fieldname,mean,size,1,steps[j],0));
|
---|
[25596] | 1039 | sprintf(fieldname,"%s%s",fields[f],"Stddev");
|
---|
[27273] | 1040 | results->AddResult(new GenericExternalResult<IssmPDouble*>(results->Size()+1,fieldname,stddev,size,1,steps[j],0));
|
---|
[25596] | 1041 | }
|
---|
| 1042 | }
|
---|
[27273] | 1043 | /*Deallocate:*/
|
---|
| 1044 | xDelete<IssmDouble>(mean);
|
---|
| 1045 | xDelete<IssmDouble>(stddev);
|
---|
| 1046 |
|
---|
[25596] | 1047 | } /*}}}*/
|
---|
| 1048 | }
|
---|
| 1049 | /*Do the same but for the time mean:*/
|
---|
| 1050 | for (int f=0;f<nfields;f++){
|
---|
| 1051 | if (meantype[f]==1){ /*deal with scalars {{{*/
|
---|
| 1052 | IssmDouble mean,stddev;
|
---|
| 1053 |
|
---|
| 1054 | /*we are broadcasting doubles:*/
|
---|
| 1055 | IssmDouble scalar=*meanx[f];
|
---|
| 1056 | IssmDouble scalar2=*meanx2[f];
|
---|
| 1057 | IssmDouble sumscalar;
|
---|
| 1058 | IssmDouble sumscalar2;
|
---|
| 1059 |
|
---|
[27273] | 1060 | xDelete<IssmDouble>(meanx[f]);
|
---|
| 1061 | xDelete<IssmDouble>(meanx2[f]);
|
---|
| 1062 |
|
---|
[25596] | 1063 | ISSM_MPI_Reduce(&scalar,&sumscalar,1,ISSM_MPI_PDOUBLE,ISSM_MPI_SUM,0,IssmComm::GetComm());
|
---|
| 1064 | ISSM_MPI_Reduce(&scalar2,&sumscalar2,1,ISSM_MPI_PDOUBLE,ISSM_MPI_SUM,0,IssmComm::GetComm());
|
---|
| 1065 | /*Build average and standard deviation. For standard deviation, use the
|
---|
| 1066 | *following formula: sigma^2=E(x^2)-mu^2:*/
|
---|
| 1067 | mean=sumscalar/nsamples;
|
---|
| 1068 | stddev=sqrt(sumscalar2/nsamples-pow(mean,2.0));
|
---|
| 1069 |
|
---|
| 1070 | /*add to results:*/
|
---|
| 1071 | if(my_rank==0){
|
---|
| 1072 | char fieldname[1000];
|
---|
| 1073 |
|
---|
| 1074 | sprintf(fieldname,"%s%s",fields[f],"TimeMean");
|
---|
[27266] | 1075 | results->AddResult(new GenericExternalResult<IssmDouble>(results->Size()+1,fieldname,mean,steps[0],0));
|
---|
[25596] | 1076 | sprintf(fieldname,"%s%s",fields[f],"TimeStddev");
|
---|
[27266] | 1077 | results->AddResult(new GenericExternalResult<IssmDouble>(results->Size()+1,fieldname,stddev,steps[0],0));
|
---|
[25596] | 1078 | }
|
---|
| 1079 | } /*}}}*/
|
---|
| 1080 | else{ /*deal with arrays:{{{*/
|
---|
| 1081 |
|
---|
| 1082 | int size=meansize[f];
|
---|
| 1083 | IssmDouble* mean=xNew<IssmDouble>(size);
|
---|
| 1084 | IssmDouble* stddev=xNew<IssmDouble>(size);
|
---|
| 1085 |
|
---|
| 1086 | /*we are broadcasting double arrays:*/
|
---|
| 1087 | x=meanx[f];
|
---|
| 1088 | x2=meanx2[f];
|
---|
| 1089 |
|
---|
| 1090 | IssmDouble* sumx=xNew<IssmDouble>(size);
|
---|
| 1091 | IssmDouble* sumx2=xNew<IssmDouble>(size);
|
---|
[26468] | 1092 |
|
---|
[25596] | 1093 | ISSM_MPI_Reduce(x,sumx,size,ISSM_MPI_PDOUBLE,ISSM_MPI_SUM,0,IssmComm::GetComm());
|
---|
| 1094 | ISSM_MPI_Reduce(x2,sumx2,size,ISSM_MPI_PDOUBLE,ISSM_MPI_SUM,0,IssmComm::GetComm());
|
---|
| 1095 |
|
---|
[27273] | 1096 | xDelete<IssmDouble>(meanx[f]);
|
---|
| 1097 | xDelete<IssmDouble>(meanx2[f]);
|
---|
| 1098 |
|
---|
[25596] | 1099 | /*Build average and standard deviation. For standard deviation, use the
|
---|
| 1100 | *following formula: sigma^2=E(x^2)-mu^2:*/
|
---|
| 1101 | for (int k=0;k<size;k++){
|
---|
| 1102 | mean[k]=sumx[k]/nsamples;
|
---|
| 1103 | stddev[k]=sqrt(sumx2[k]/nsamples-pow(mean[k],2.0));
|
---|
| 1104 | }
|
---|
| 1105 |
|
---|
| 1106 | /*add to results:*/
|
---|
| 1107 | if(my_rank==0){
|
---|
| 1108 | char fieldname[1000];
|
---|
| 1109 |
|
---|
| 1110 | sprintf(fieldname,"%s%s",fields[f],"TimeMean");
|
---|
[27266] | 1111 | results->AddResult(new GenericExternalResult<IssmPDouble*>(results->Size()+1,fieldname,mean,size,1,steps[0],0));
|
---|
[25596] | 1112 | sprintf(fieldname,"%s%s",fields[f],"TimeStddev");
|
---|
[27266] | 1113 | results->AddResult(new GenericExternalResult<IssmPDouble*>(results->Size()+1,fieldname,stddev,size,1,steps[0],0));
|
---|
[25596] | 1114 | }
|
---|
[27273] | 1115 | /*Deallocate:*/
|
---|
| 1116 | xDelete<IssmDouble>(sumx);
|
---|
| 1117 | xDelete<IssmDouble>(sumx2);
|
---|
| 1118 | xDelete<IssmDouble>(mean);
|
---|
| 1119 | xDelete<IssmDouble>(stddev);
|
---|
[25596] | 1120 | } /*}}}*/
|
---|
| 1121 | }
|
---|
[25688] | 1122 | _printf0_("Done with MeanVariance:\n");
|
---|
[25599] | 1123 | IssmComm::SetComm(ISSM_MPI_COMM_WORLD);
|
---|
[25711] | 1124 | return 1;
|
---|
[25596] | 1125 | } /*}}}*/
|
---|
| 1126 | int ComputeSampleSeries(Parameters* parameters,Results* results,int color, ISSM_MPI_Comm statcomm){ /*{{{*/
|
---|
| 1127 |
|
---|
| 1128 | int nsamples;
|
---|
| 1129 | char* directory=NULL;
|
---|
| 1130 | char* model=NULL;
|
---|
| 1131 | char** fields=NULL;
|
---|
| 1132 | int* steps=NULL;
|
---|
| 1133 | int nsteps;
|
---|
| 1134 | int nfields;
|
---|
| 1135 | int range,lower_row,upper_row;
|
---|
[25605] | 1136 | int nfilesperdirectory;
|
---|
[25596] | 1137 | int* indices=NULL;
|
---|
| 1138 | int nindices;
|
---|
[26468] | 1139 |
|
---|
[25596] | 1140 | /*intermediary:*/
|
---|
| 1141 | IssmDouble* doublemat=NULL;
|
---|
| 1142 | int doublematsize;
|
---|
| 1143 | IssmDouble scalar;
|
---|
| 1144 |
|
---|
| 1145 | /*computation of average and variance itself:*/
|
---|
| 1146 | IssmDouble* x = NULL;
|
---|
| 1147 | IssmDouble* allx=NULL;
|
---|
| 1148 | IssmDouble** xs = NULL;
|
---|
| 1149 | int* xtype=NULL;
|
---|
| 1150 | int* xsize=NULL;
|
---|
| 1151 |
|
---|
[25605] | 1152 | /*only work on the statistical communicator: */
|
---|
| 1153 | if (color==MPI_UNDEFINED)return 0;
|
---|
| 1154 |
|
---|
[25596] | 1155 | /*Retrieve parameters:*/
|
---|
| 1156 | parameters->FindParam(&nsamples,QmuNsampleEnum);
|
---|
| 1157 | parameters->FindParam(&directory,DirectoryNameEnum);
|
---|
| 1158 | parameters->FindParam(&model,InputFileNameEnum);
|
---|
| 1159 | parameters->FindParam(&fields,&nfields,FieldsEnum);
|
---|
| 1160 | parameters->FindParam(&steps,&nsteps,StepsEnum);
|
---|
| 1161 | parameters->FindParam(&indices,&nindices,IndicesEnum);
|
---|
| 1162 |
|
---|
[25605] | 1163 | /*Get rank from the stat comm communicator:*/
|
---|
| 1164 | IssmComm::SetComm(statcomm);
|
---|
[25596] | 1165 | int my_rank=IssmComm::GetRank();
|
---|
| 1166 |
|
---|
| 1167 | /*Open files and read them complelety, in a distributed way:*/
|
---|
| 1168 | range=DetermineLocalSize(nsamples,IssmComm::GetComm());
|
---|
| 1169 | GetOwnershipBoundariesFromRange(&lower_row,&upper_row,range,IssmComm::GetComm());
|
---|
| 1170 |
|
---|
| 1171 | /*Initialize arrays:*/
|
---|
| 1172 | xs=xNew<IssmDouble*>(nfields*nsteps);
|
---|
| 1173 | xtype=xNew<int>(nfields*nsteps);
|
---|
| 1174 | xsize=xNew<int>(nfields*nsteps);
|
---|
| 1175 |
|
---|
[27275] | 1176 | /*_printf0_("nindices: " << nindices << "\n");
|
---|
| 1177 | for (int i=0;i<nindices;i++){
|
---|
| 1178 | _printf0_(indices[i] << " " );
|
---|
| 1179 | }
|
---|
| 1180 | _printf0_("\n");
|
---|
| 1181 |
|
---|
| 1182 | _printf0_("nsteps: " << nsteps << "\n");
|
---|
| 1183 | for (int i=0;i<nsteps;i++){
|
---|
| 1184 | _printf0_(steps[i] << " " );
|
---|
| 1185 | }
|
---|
| 1186 | _printf0_("\n");*/
|
---|
| 1187 |
|
---|
| 1188 |
|
---|
| 1189 |
|
---|
[25596] | 1190 | /*Start opening files:*/
|
---|
| 1191 | for (int i=(lower_row+1);i<=upper_row;i++){
|
---|
| 1192 | _printf0_("reading file #: " << i << "\n");
|
---|
[27275] | 1193 | /*Create memory buffer for file, to speed things up: {{{*/
|
---|
[25596] | 1194 | char file[1000];
|
---|
| 1195 | long int length;
|
---|
| 1196 | char* buffer=NULL;
|
---|
| 1197 |
|
---|
| 1198 | /*string:*/
|
---|
| 1199 | sprintf(file,"%s/%i/%s.outbin.%i",directory,my_rank+1,model,i);
|
---|
| 1200 |
|
---|
| 1201 | /*open file: */
|
---|
| 1202 | _printf0_(" opening file:\n");
|
---|
| 1203 | FILE* fid=fopen(file,"rb");
|
---|
| 1204 |
|
---|
| 1205 | /*figure out size of file, and read the whole thing:*/
|
---|
| 1206 | _printf0_(" reading file:\n");
|
---|
| 1207 | fseek (fid, 0, SEEK_END);
|
---|
| 1208 | length = ftell (fid);
|
---|
| 1209 | fseek (fid, 0, SEEK_SET);
|
---|
| 1210 | buffer = xNew<char>(length);
|
---|
| 1211 | fread (buffer, sizeof(char), length, fid);
|
---|
| 1212 |
|
---|
| 1213 | /*close file:*/
|
---|
| 1214 | fclose (fid);
|
---|
| 1215 |
|
---|
| 1216 | /*create a memory stream with this buffer:*/
|
---|
| 1217 | _printf0_(" processing file:\n");
|
---|
| 1218 | fid=fmemopen(buffer, length, "rb");
|
---|
[27275] | 1219 | /*}}}*/
|
---|
| 1220 | /*Retrieve the values for all fields and time steps:{{{*/
|
---|
[25596] | 1221 | for (int f=0;f<nfields;f++){
|
---|
| 1222 | fseek(fid,0,SEEK_SET);
|
---|
| 1223 | char* field=fields[f];
|
---|
| 1224 | for (int j=0;j<nsteps;j++){
|
---|
| 1225 | int counter=f*nsteps+j;
|
---|
| 1226 | xtype[counter]=readdata(&doublemat, &doublematsize, &scalar, fid,field,steps[j]);
|
---|
| 1227 | if(i==(lower_row+1)){
|
---|
| 1228 | if(xtype[counter]==1){
|
---|
| 1229 | x=xNew<IssmDouble>(range);
|
---|
| 1230 | x[0]=scalar;
|
---|
| 1231 | xs[counter]=x;
|
---|
| 1232 | xsize[counter]=range;
|
---|
| 1233 | }
|
---|
| 1234 | else if (xtype[counter]==3){
|
---|
| 1235 | x=xNew<IssmDouble>(nindices*range);
|
---|
| 1236 | for(int k=0;k<nindices;k++)x[(i-(lower_row+1))*nindices+k]=doublemat[indices[k]-1];
|
---|
| 1237 | xs[counter]=x;
|
---|
| 1238 | xsize[counter]=range*nindices;
|
---|
| 1239 | }
|
---|
| 1240 | else _error_("cannot carry out statistics on type " << xtype[counter]);
|
---|
| 1241 | }
|
---|
| 1242 | else{
|
---|
| 1243 | if(xtype[counter]==1){
|
---|
| 1244 | x=xs[counter];
|
---|
| 1245 | x[i-(lower_row+1)]=scalar;
|
---|
| 1246 | xs[counter]=x;
|
---|
| 1247 | }
|
---|
| 1248 | else if (xtype[counter]==3){
|
---|
| 1249 | x=xs[counter];
|
---|
| 1250 | for(int k=0;k<nindices;k++)x[(i-(lower_row+1))*nindices+k]=doublemat[indices[k]-1];
|
---|
| 1251 | xs[counter]=x;
|
---|
| 1252 | }
|
---|
| 1253 | else _error_("cannot carry out statistics on type " << xtype[counter]);
|
---|
| 1254 | }
|
---|
| 1255 | }
|
---|
| 1256 | }
|
---|
| 1257 | fclose(fid);
|
---|
| 1258 | xDelete<char>(buffer);
|
---|
[27275] | 1259 | /*}}}*/
|
---|
[25596] | 1260 | }
|
---|
| 1261 | ISSM_MPI_Barrier(IssmComm::GetComm());
|
---|
[27275] | 1262 | _printf0_("Done reading files, now assembling time series.\n"); //{{{
|
---|
[25596] | 1263 |
|
---|
| 1264 | for (int f=0;f<nfields;f++){
|
---|
| 1265 | for (int j=0;j<nsteps;j++){
|
---|
| 1266 | int counter=f*nsteps+j;
|
---|
| 1267 | if (xtype[counter]==1){
|
---|
| 1268 | /*we are broadcasting range times doubles:*/
|
---|
| 1269 | x=xs[counter];
|
---|
| 1270 | allx=xNew<IssmDouble>(nsamples);
|
---|
| 1271 | MPI_Gather(x, range, ISSM_MPI_PDOUBLE,allx, range, ISSM_MPI_PDOUBLE, 0, IssmComm::GetComm());
|
---|
| 1272 | /*add to results:*/
|
---|
| 1273 | if(my_rank==0){
|
---|
| 1274 | char fieldname[1000];
|
---|
[26468] | 1275 |
|
---|
[25596] | 1276 | sprintf(fieldname,"%s%s",fields[f],"Samples");
|
---|
| 1277 | results->AddResult(new GenericExternalResult<IssmPDouble*>(results->Size()+1,fieldname,allx,nsamples,1,j+1,0));
|
---|
| 1278 | }
|
---|
| 1279 | }
|
---|
| 1280 | else{
|
---|
| 1281 | /*we are broadcasting double arrays:*/
|
---|
| 1282 | x=xs[counter];
|
---|
| 1283 | allx=xNew<IssmDouble>(nsamples*nindices);
|
---|
[26468] | 1284 |
|
---|
[25596] | 1285 | MPI_Gather(x, range*nindices, ISSM_MPI_PDOUBLE,allx, range*nindices, ISSM_MPI_PDOUBLE, 0, IssmComm::GetComm());
|
---|
[26468] | 1286 |
|
---|
[25596] | 1287 | /*add to results:*/
|
---|
| 1288 | if(my_rank==0){
|
---|
| 1289 | char fieldname[1000];
|
---|
| 1290 | sprintf(fieldname,"%s%s",fields[f],"Samples");
|
---|
| 1291 | results->AddResult(new GenericExternalResult<IssmPDouble*>(results->Size()+1,fieldname,allx,nsamples,nindices,j+1,0));
|
---|
| 1292 | }
|
---|
| 1293 | }
|
---|
| 1294 | }
|
---|
[27275] | 1295 | } //}}}
|
---|
[25688] | 1296 | _printf0_("Done with SampleSeries:\n");
|
---|
[25605] | 1297 | IssmComm::SetComm(ISSM_MPI_COMM_WORLD);
|
---|
[25596] | 1298 |
|
---|
[25711] | 1299 | return 1;
|
---|
[25596] | 1300 | } /*}}}*/
|
---|
[25599] | 1301 | int OutputStatistics(Parameters* parameters,Results* results,int color,ISSM_MPI_Comm statcomm){ /*{{{*/
|
---|
| 1302 |
|
---|
[25596] | 1303 | char outputfilename[1000];
|
---|
| 1304 | char* directory=NULL;
|
---|
| 1305 | char* model=NULL;
|
---|
| 1306 | char* method=NULL;
|
---|
| 1307 | int nsamples;
|
---|
| 1308 | int* steps=NULL;
|
---|
| 1309 | int nsteps;
|
---|
| 1310 |
|
---|
[25599] | 1311 | /*only work on the statistical communicator: */
|
---|
| 1312 | if (color==MPI_UNDEFINED)return 0;
|
---|
| 1313 |
|
---|
[25596] | 1314 | FemModel* femmodel=new FemModel();
|
---|
[26468] | 1315 |
|
---|
[25596] | 1316 | /*Some parameters that will allow us to use the OutputResultsx module:*/
|
---|
| 1317 | parameters->AddObject(new BoolParam(QmuIsdakotaEnum,false));
|
---|
| 1318 | parameters->AddObject(new BoolParam(SettingsIoGatherEnum,true));
|
---|
| 1319 |
|
---|
| 1320 | parameters->FindParam(&directory,DirectoryNameEnum);
|
---|
| 1321 | parameters->FindParam(&model,InputFileNameEnum);
|
---|
| 1322 | parameters->FindParam(&nsamples,QmuNsampleEnum);
|
---|
| 1323 | parameters->FindParam(&steps,&nsteps,StepsEnum);
|
---|
| 1324 |
|
---|
| 1325 | sprintf(outputfilename,"%s/%s.stats",directory,model);
|
---|
| 1326 | parameters->AddObject(new StringParam(OutputFileNameEnum,outputfilename));
|
---|
| 1327 |
|
---|
| 1328 | /*Call OutputResults module:*/
|
---|
| 1329 | femmodel->parameters=parameters;
|
---|
| 1330 | femmodel->results=results;
|
---|
| 1331 |
|
---|
| 1332 | OutputResultsx(femmodel);
|
---|
[25711] | 1333 |
|
---|
| 1334 | return 1;
|
---|
[25596] | 1335 | } /*}}}*/
|
---|
[27268] | 1336 | int readdata(IssmDouble** pdoublemat, int* pdoublematsize, IssmDouble* pdouble, FILE* fid,char* field,int step){ /*{{{*/
|
---|
| 1337 |
|
---|
| 1338 | int length;
|
---|
| 1339 | char fieldname[1000];
|
---|
| 1340 | int fieldname_size;
|
---|
| 1341 | IssmDouble rtime;
|
---|
| 1342 | int rstep;
|
---|
| 1343 | int M,N;
|
---|
| 1344 |
|
---|
| 1345 | //fields that we retrive:
|
---|
| 1346 | IssmDouble dfield;
|
---|
| 1347 | char* sfield = NULL;
|
---|
| 1348 | IssmDouble* dmatfield = NULL;
|
---|
| 1349 | int* imatfield = NULL;
|
---|
| 1350 |
|
---|
| 1351 | //type of the returned field:
|
---|
| 1352 | int type;
|
---|
| 1353 | int found=0;
|
---|
| 1354 |
|
---|
| 1355 | while(1){
|
---|
| 1356 |
|
---|
| 1357 | size_t ret_code = fread(&fieldname_size, sizeof(int), 1, fid);
|
---|
| 1358 | if(ret_code != 1) break; //we are done.
|
---|
| 1359 |
|
---|
| 1360 | fread(fieldname, sizeof(char), fieldname_size, fid);
|
---|
| 1361 | //_printf0_("fieldname: " << fieldname << "\n");
|
---|
| 1362 |
|
---|
| 1363 | fread(&rtime, sizeof(IssmDouble), 1, fid);
|
---|
| 1364 | fread(&rstep, sizeof(int), 1, fid);
|
---|
| 1365 |
|
---|
| 1366 | //check on field:
|
---|
| 1367 | if ((step==rstep) && (strcmp(field,fieldname)==0)){
|
---|
| 1368 |
|
---|
| 1369 | //ok, go read the result really:
|
---|
| 1370 | fread(&type,sizeof(int),1,fid);
|
---|
| 1371 | fread(&M,sizeof(int),1,fid);
|
---|
| 1372 | if (type==1){
|
---|
| 1373 | fread(&dfield,sizeof(IssmDouble),1,fid);
|
---|
| 1374 | }
|
---|
| 1375 | else if (type==2){
|
---|
| 1376 | fread(&M,sizeof(int),1,fid);
|
---|
| 1377 | sfield=xNew<char>(M);
|
---|
| 1378 | fread(sfield,sizeof(char),M,fid);
|
---|
| 1379 | }
|
---|
| 1380 | else if (type==3){
|
---|
| 1381 | fread(&N,sizeof(int),1,fid);
|
---|
| 1382 | dmatfield=xNew<IssmDouble>(M*N);
|
---|
| 1383 | fread(dmatfield,sizeof(IssmDouble),M*N,fid);
|
---|
| 1384 | }
|
---|
| 1385 | else if (type==4){
|
---|
| 1386 | fread(&N,sizeof(int),1,fid);
|
---|
| 1387 | imatfield=xNew<int>(M*N);
|
---|
| 1388 | fread(imatfield,sizeof(int),M*N,fid);
|
---|
| 1389 | }
|
---|
| 1390 | else _error_("cannot read data of type " << type << "\n");
|
---|
| 1391 | found=1;
|
---|
| 1392 | break;
|
---|
| 1393 | }
|
---|
| 1394 | else{
|
---|
| 1395 | //just skim to next results.
|
---|
| 1396 | fread(&type,sizeof(int),1,fid);
|
---|
| 1397 | fread(&M,sizeof(int),1,fid);
|
---|
| 1398 | if (type==1){
|
---|
| 1399 | fseek(fid,sizeof(IssmDouble),SEEK_CUR);
|
---|
| 1400 | }
|
---|
| 1401 | else if(type==2){
|
---|
| 1402 | fseek(fid,M*sizeof(char),SEEK_CUR);
|
---|
| 1403 | }
|
---|
| 1404 | else if(type==3){
|
---|
| 1405 | fread(&N,sizeof(int),1,fid);
|
---|
| 1406 | fseek(fid,M*N*sizeof(IssmDouble),SEEK_CUR);
|
---|
| 1407 | }
|
---|
| 1408 | else if(type==4){
|
---|
| 1409 | fread(&N,sizeof(int),1,fid);
|
---|
| 1410 | fseek(fid,M*N*sizeof(int),SEEK_CUR);
|
---|
| 1411 | }
|
---|
| 1412 | else _error_("cannot read data of type " << type << "\n");
|
---|
| 1413 | }
|
---|
| 1414 | }
|
---|
| 1415 | if(found==0)_error_("cound not find " << field << " at step " << step << "\n");
|
---|
| 1416 |
|
---|
| 1417 | /*assign output pointers:*/
|
---|
| 1418 | *pdoublemat=dmatfield;
|
---|
| 1419 | *pdoublematsize=M*N;
|
---|
| 1420 | *pdouble=dfield;
|
---|
| 1421 |
|
---|
| 1422 | /*return:*/
|
---|
| 1423 | return type;
|
---|
| 1424 |
|
---|
| 1425 | }
|
---|
| 1426 | /*}}}*/
|
---|
[25615] | 1427 | bool DakotaDirStructure(int argc,char** argv){ /*{{{*/
|
---|
| 1428 |
|
---|
| 1429 | char* input_file;
|
---|
| 1430 | FILE* fid;
|
---|
| 1431 | IoModel* iomodel=NULL;
|
---|
| 1432 | int check;
|
---|
| 1433 |
|
---|
| 1434 | //qmu statistics
|
---|
| 1435 | bool statistics = false;
|
---|
| 1436 | int numdirectories = 0;
|
---|
| 1437 |
|
---|
| 1438 | /*First things first, set the communicator as a global variable: */
|
---|
| 1439 | IssmComm::SetComm(MPI_COMM_WORLD);
|
---|
| 1440 |
|
---|
| 1441 | /*Barrier:*/
|
---|
| 1442 | ISSM_MPI_Barrier(IssmComm::GetComm());
|
---|
| 1443 | _printf0_("Preparing directory structure for model outputs:" << "\n");
|
---|
| 1444 |
|
---|
| 1445 | //open model input file for reading
|
---|
| 1446 | input_file=xNew<char>((strlen(argv[2])+strlen(argv[3])+strlen(".bin")+2));
|
---|
| 1447 | sprintf(input_file,"%s/%s%s",argv[2],argv[3],".bin");
|
---|
| 1448 | fid=fopen(input_file,"rb");
|
---|
| 1449 | if (fid==NULL) Cerr << "dirstructure error message: could not open model " << input_file << " to retrieve qmu statistics parameters" << std::endl;
|
---|
| 1450 |
|
---|
| 1451 | //initialize IoModel, but light version, we just need it to fetch one constant:
|
---|
| 1452 | iomodel=new IoModel();
|
---|
| 1453 | iomodel->fid=fid;
|
---|
| 1454 | iomodel->FetchConstants();
|
---|
| 1455 |
|
---|
| 1456 | //early return if statistics not requested:
|
---|
| 1457 | iomodel->FindConstant(&statistics,"md.qmu.statistics");
|
---|
| 1458 | if(!statistics){
|
---|
| 1459 | delete iomodel;
|
---|
[25711] | 1460 | xDelete<char>(input_file);
|
---|
| 1461 | fclose(fid);
|
---|
[25615] | 1462 | return false; //important return value!
|
---|
| 1463 | }
|
---|
| 1464 |
|
---|
| 1465 | iomodel->FindConstant(&numdirectories,"md.qmu.statistics.ndirectories");
|
---|
| 1466 |
|
---|
| 1467 | /*Ok, we have everything we need to create the directory structure:*/
|
---|
| 1468 | if(IssmComm::GetRank()==0){
|
---|
| 1469 | for (int i=0;i<numdirectories;i++){
|
---|
| 1470 | char directory[1000];
|
---|
| 1471 | sprintf(directory,"./%i",i+1);
|
---|
| 1472 |
|
---|
| 1473 | check = mkdir(directory,ACCESSPERMS);
|
---|
| 1474 | if (check) _error_("dirstructure error message: could not create directory " << directory << "\n");
|
---|
| 1475 | }
|
---|
| 1476 | }
|
---|
| 1477 |
|
---|
[25711] | 1478 | /*Delete resources:*/
|
---|
| 1479 | delete iomodel;
|
---|
| 1480 | xDelete<char>(input_file);
|
---|
| 1481 |
|
---|
[25615] | 1482 | //close model file:
|
---|
| 1483 | fclose(fid);
|
---|
| 1484 |
|
---|
| 1485 | //return value:
|
---|
| 1486 | return true; //statistics computation on!
|
---|
| 1487 | } /*}}}*/
|
---|