1 | import numpy as np
|
---|
2 |
|
---|
3 | def ll2xy(lat,lon,sgn=-1,central_meridian=0,standard_parallel=71):
|
---|
4 | '''
|
---|
5 | LL2XY - converts lat lon to polar stereographic
|
---|
6 |
|
---|
7 | Converts from geodetic latitude and longitude to Polar
|
---|
8 | Stereographic (X,Y) coordinates for the polar regions.
|
---|
9 | Author: Michael P. Schodlok, December 2003 (map2ll)
|
---|
10 |
|
---|
11 | Usage:
|
---|
12 | x,y = ll2xy(lat,lon,sgn)
|
---|
13 | x,y = ll2xy(lat,lon,sgn,central_meridian,standard_parallel)
|
---|
14 |
|
---|
15 | - sgn = Sign of latitude +1 : north latitude (default is mer=45 lat=70)
|
---|
16 | -1 : south latitude (default is mer=0 lat=71)
|
---|
17 | '''
|
---|
18 |
|
---|
19 | assert sgn==1 or sgn==-1, 'error: sgn should be either +1 or -1'
|
---|
20 |
|
---|
21 | #Get central_meridian and standard_parallel depending on hemisphere
|
---|
22 | if sgn == 1:
|
---|
23 | delta = 45
|
---|
24 | slat = 70
|
---|
25 | print ' ll2xy: creating coordinates in north polar stereographic (Std Latitude: 70N Meridian: 45)'
|
---|
26 | else:
|
---|
27 | delta = central_meridian
|
---|
28 | slat = standard_parallel
|
---|
29 | print ' ll2xy: creating coordinates in south polar stereographic (Std Latitude: 71S Meridian: 0)'
|
---|
30 |
|
---|
31 | # Conversion constant from degrees to radians
|
---|
32 | cde = 57.29577951
|
---|
33 | # Radius of the earth in meters
|
---|
34 | re = 6378.273*10**3
|
---|
35 | # Eccentricity of the Hughes ellipsoid squared
|
---|
36 | ex2 = .006693883
|
---|
37 | # Eccentricity of the Hughes ellipsoid
|
---|
38 | ex = np.sqrt(ex2)
|
---|
39 |
|
---|
40 | latitude = np.abs(lat) * np.pi/180.
|
---|
41 | longitude = (lon + delta) * np.pi/180.
|
---|
42 |
|
---|
43 | # compute X and Y in grid coordinates.
|
---|
44 | T = np.tan(np.pi/4-latitude/2) / ((1-ex*np.sin(latitude))/(1+ex*np.sin(latitude)))**(ex/2)
|
---|
45 |
|
---|
46 | if (90 - slat) < 1.e-5:
|
---|
47 | rho = 2.*re*T/np.sqrt((1.+ex)**(1.+ex)*(1.-ex)**(1.-ex))
|
---|
48 | else:
|
---|
49 | sl = slat*np.pi/180.
|
---|
50 | tc = np.tan(np.pi/4.-sl/2.)/((1.-ex*np.sin(sl))/(1.+ex*np.sin(sl)))**(ex/2.)
|
---|
51 | mc = np.cos(sl)/np.sqrt(1.0-ex2*(np.sin(sl)**2))
|
---|
52 | rho = re*mc*T/tc
|
---|
53 |
|
---|
54 | y = -rho * sgn * np.cos(sgn*longitude)
|
---|
55 | x = rho * sgn * np.sin(sgn*longitude)
|
---|
56 |
|
---|
57 | cnt1=np.nonzero(latitude>= np.pi/2.)[0]
|
---|
58 |
|
---|
59 | if cnt1:
|
---|
60 | x[cnt1,0] = 0.0
|
---|
61 | y[cnt1,0] = 0.0
|
---|
62 | return x,y
|
---|